The Associations between Food, Nutrition and Physical Activity and the Risk of Skin Cancers

CUP Continuous
Update
Project

Analysing research on cancer prevention and survival

Imperial College London
Continuous Update Project Team Members

Teresa Norat
Snieguole Vingeliene
Doris Chan
Elli Polemiti
Jakub Sobiecki
Leila Abar
WCRF Coordinator:
Rachel Thompson
Statistical advisor:
Darren C. Greenwood
Database manager:
Christophe Stevens
Date completed:
9 January 2017
Date revised:
20 November 2018

Table of Contents

Background 12
Continuous Update Project: Results of the search 15
Results by exposure 16
1 Patterns of diet 20
1.4.1 Low fat diet 20
1.3.1 Vegetarianism/ Pescetarianism 20
1.3.2 Seventh Day Adventists Diet 20
1.4.2 Healthy lifestyle indices 21
1.4.3 Low-carbohydrate, high-protein diet score (LCHP) 21
1.4.4 Meat and fat dietary (MF) pattern/ Vegetable and fruit dietary (VF) pattern 22
1.4.5 Organic food consumption 22
2 Foods 29
2.2.3 All vegetables 29
5.1 Meat 33
2.5.1.2 Processed meat 33
2.5.1.3 Red and processed meat 34
2.5.1.4 Poultry 35
2.5.1.5 Offal 35
2.5.2 Fish 35
2.5.2.5 Oily fish 36
2.5.4 Egg 36
3 Beverages 43
3.6.1 Coffee 43
3.6.1 Decaffeinated coffee 58
3.7.1 Total alcoholic drinks 69
3.7.1.1 Beer 92
3.7.1.2 Wine 98
3.7.1.3 Spirits 107
3.7.1.4 Other alcoholic drinks 112
4 Food production, preservation, processing and preparation 112
4.1.2.7.2 Arsenic in drinking water 112
5 Dietary constituents 116
5.5.1.1 Retinol in blood 116
5.5.1.1 Retinol in diet 116
5.5.1.1 Total retinol intake 119
5.5.1.1 Retinol in supplement 121
5.5.1.2 Beta-carotene in blood 132
5.5.1.2 Beta-carotene in diet 133
5.5.1.2.2 Beta-carotene in diet and supplement. 133
5.5.1.2 Beta-carotene in supplement 134
5.5.2.3 Lycopene in diet 149
5.5.2.5 Lutein and zeaxanthin in diet 152
5.5.10 Vitamin D in blood 155
5.5.10 Vitamin D in diet 171
5.5.10 Vitamin D in diet and supplement 171
5.5.10 Vitamin D in supplement. 173
5.5.10 Vitamin D and calcium in supplement 173
5.5.18 Multivitamins supplement 177
5.5.19 Folate, pyridoxine $\left(\mathrm{B}_{\iota}\right)$ and cobalamin $\left(\mathrm{B}_{\mathrm{r}}\right)$ in supplement 187
5.6.4 Selenium in diet 191
5.6.4 Selenium in blood 191
5.6.4 Selenium in supplements 192
5.6.4 Selenium in toenail (\& fingernail) 195
5.7.6 Caffeine in diet. 205
6 Physical activity 209
6.1 Total physical activity (overall summary measures) 209
6.1.1.1 Occupational physical activity 209
6.1.1.2 Recreational physical activity 210
6.1.1.4 Walking 211
6.3.3 Heavy work occupation 211
8 Anthropometry 218
8.1.1 BMI 218
8.1.1 BMI in early adulthood 264
8.1.3 Weight 266
8.1.6 Change in weight 270
8.2.1 Waist circumference 270
8.2.2 Hip circumference 271
8.2.3 Waist to hip ratio 271
8.3.1 Height (and proxy measures) 277
8.4.1 Birthweight 295
References 304
Appendix 1 The protocol 318
Appendix 2 Modifications to the protocol 331
Appendix 3 Exposure codes 337
Appendix 4 Arsenic from diet and skin cancer risk. Main characteristics of case- control and ecologic studies 351

List of figures

Figure 1 Summary of judgements of the WCRF-AICR Second Expert Report, 2005 12
Figure 2 Flow chart of the search for skin cancer - Continuous Update Project 15
Figure 3 RR estimates of skin cancer by levels of coffee intake 54
Figure 4 RR ($95 \% \mathrm{CI}$) of melanoma for the highest compared with the lowest level of coffee intake, by cancer type 55
Figure 5 Relative risk of melanoma for 1 cup/day increase of coffee intake, by cancer type. 56
Figure 6 Funnel plot of studies included in the dose response meta-analysis of coffee and melanoma 56
Figure 7 Relative risk of melanoma for 1 cup/day increase of coffee intake, by sex 57
Figure 8 Relative risk of melanoma for 1 cup/day increase of coffee intake, by geographic location 57
Figure 9 RR estimates of melanoma by levels of decaffeinated coffee intake 66
Figure 10 RR (95% CI) of melanoma for the highest compared with the lowest level of decaffeinated coffee intake 67
Figure 11 Relative risk of melanoma for 1 cup/day increase of decaffeinated coffee intake.. 67
Figure 12 Funnel plot of studies included in the dose response meta-analysis of decaffeinated coffee and melanoma 68
Figure 13 Relative risk of melanoma for 1 cup/day increase of decaffeinated coffee intake, by sex. 68
Figure 14 RR estimates of melanoma by levels of total alcohol intake 84
Figure $15 \mathrm{RR}(95 \% \mathrm{CI})$ of melanoma for the highest compared with the lowest level of total alcohol intake 84
Figure 16 Relative risk of melanoma per $10 \mathrm{~g} /$ day increase of total alcohol intake 85
Figure 17 Funnel plot of studies included in the dose response meta-analysis of total alcohol intake and melanoma 85
Figure 18 Nonlinear dose-response meta-analysis of total alcohol intake and melanoma 86
Figure 19 RR estimates of BCC by levels of total alcohol intake 87
Figure 20 RR ($95 \% \mathrm{CI}$) of BCC for the highest compared with the lowest level of total alcohol intake 87
Figure 21 Relative risk of BCC per $10 \mathrm{~g} /$ day increase of total alcohol intake 88
Figure 22 Funnel plot of studies in the dose response meta-analysis of total alcohol and BCC 88
Figure 23 Relative risk of BCC per 10g/day increase of total alcohol intake, by sex 89
Figure 24 Relative risk of BCC per 10g/day increase of total alcohol intake, by geographic location 89
Figure 25 Nonlinear dose-response meta-analysis of total alcohol intake and BCC 90
Figure 26 RR estimates of SCC by levels of total alcohol intake 91
Figure 27 RR ($95 \% \mathrm{CI}$) of SCC for the highest compared with the lowest level of total alcohol intake 91
Figure 28 Relative risk of SCC per $10 \mathrm{~g} /$ day increase of total alcohol intake 92
Figure 29 RR (95% CI) of melanoma for the highest compared with the lowest level of vitamin D in blood 166
Figure 30 Relative risk of melanoma for $30 \mathrm{nmol} / \mathrm{l}$ increase of vitamin D in blood 166
Figure 31 RR estimates of NMSC by levels of vitamin D in blood 166
Figure 32 RR $(95 \% \mathrm{CI})$ of NMSC for the highest compared with the lowest level of vitamin D in blood 167
Figure 33 Relative risk of NMSC for $30 \mathrm{nmol} / \mathrm{l}$ increase of vitamin D in blood 168
Figure 34 RR estimates of BCC by levels of vitamin D in blood 168
Figure 35 RR (95% CI) of BCC for the highest compared with the lowest level of vitamin D in blood 169
Figure 36 Relative risk of BCC for $30 \mathrm{nmol} / 1$ increase of vitamin D in blood 169
Figure 37 RR ($95 \% \mathrm{CI}$) of SCC for the highest compared with the lowest level of vitamin D in blood 170
Figure 38 Relative risk of SCC for $30 \mathrm{nmol} / \mathrm{l}$ increase of vitamin D in blood 170
Figure 39 RR estimates of melanoma by levels of BMI 244
Figure 40 RR (95% CI) of melanoma for the highest compared with the lowest level of BMI 245
Figure 41 Relative risk of melanoma for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI 246
Figure 42 Funnel plot of studies included in the dose response meta-analysis of BMI and melanoma 246
Figure 43 Relative risk of melanoma for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI, by sex 247
Figure 44 Relative risk of melanoma for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI, by geographic location 248
Figure 45 Relative risk of melanoma for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI, by assessment method 249
Figure 46 Nonlinear dose-response meta-analysis of BMI and melanoma 249
Figure 47 RR estimates of NMSC by levels of BMI 251
Figure 48 RR $(95 \% \mathrm{CI})$ of NMSC for the highest compared with the lowest level of BMI 251
Figure 49 Relative risk of NMSC for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI 252
Figure 50 Relative risk of NMSC for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI, by sex 252
Figure 51 Relative risk of NMSC for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI, by geographic location. 253
Figure 52 RR estimates of BCC by levels of BMI 254
Figure 53 RR (95% CI) of BCC for the highest compared with the lowest level of BMI 255
Figure 54 Relative risk of BCC for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI 255
Figure 55 Funnel plot of studies included in the dose response meta-analysis of BMI and BCC 256
Figure 56 Relative risk of BCC for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI, by sex 256
Figure 57 Relative risk of BCC for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI, by geographic location 257
Figure 58 Nonlinear dose-response meta-analysis of BMI and BCC 257
Figure 59 RR estimates of SCC by levels of BMI 259
Figure $60 \mathrm{RR}(95 \% \mathrm{CI})$ of SCC for the highest compared with the lowest level of BMI 260
Figure 61 Relative risk of SCC for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI 260
Figure 62 Funnel plot of studies included in the dose response meta-analysis of BMI and SCC. 261
Figure 63 Relative risk of SCC for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI, by sex 261
Figure 64 Relative risk of SCC for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI, by geographic location 262
Figure 65 Nonlinear dose-response meta-analysis of BMI and SCC 262
Figure 66 RR estimates of melanoma by levels of height 292
Figure 67 RR (95% CI) of melanoma for the highest compared with the lowest level of height 292
Figure 68 Relative risk of melanoma for 5 cm increase of height 293
Figure 69 Funnel plot of studies included in the dose response meta-analysis of height and melanoma 293
Figure 70 Relative risk of melanoma for 5 cm increase of height, by sex 294
Figure 71 Relative risk of melanoma for 5 cm increase of height, by geographic location 294
Figure 72 RR estimates of melanoma by levels of birthweight 301
Figure 73 RR (95% CI) of melanoma for the highest compared with the lowest birthweight 301
Figure 74 Relative risk of melanoma for 500 g increase of birthweight 302
Figure 75 Funnel plot of studies included in the dose response meta-analysis of birthweight 302
Figure 76 Relative risk of melanoma for 500 g increase of birthweight, by sex 303
Figure 77 Relative risk of melanoma for 500 g increase of birthweight, by geographic location 303
List of tables
Table 1 Number of relevant publications identified during the 2005 SLR and the CUP and total number of publications by exposure 16
Table 2 Dietary patterns and skin cancer risk. Main characteristics of identified studies. 23
Table 3 Vegetable intake and skin cancer risk. Main characteristics of identified studies 30
Table 4 Meat, poultry, fish and egg consumption and skin cancer risk. Main characteristics of studies identified 38
Table 5 Coffee intake and skin cancer risk. Number of studies in the CUP SLR 43
Table 6 Coffee and skin cancer risk. Summary of the linear dose-response meta-analysis in the 2005 SLR and 2016 CUP. 45
Table 7 Coffee intake and skin cancer risk. Results of meta-analyses including prospective studies published after the 2005 SLR 47
Table 8 Coffee intake and skin cancer risk. Main characteristics of studies included in the linear dose-response meta-analysis. 48
Table 9 Coffee intake and skin cancer risk. Main characteristics of studies excluded from the linear dose-response meta-analysis. 52
Table 10 Decaffeinated coffee intake and skin cancer risk. Number of studies in the CUP SLR. 58
Table 11 Decaffeinated coffee and skin cancer risk. Summary of the linear dose-response meta-analysis in the 2005 SLR and 2016 CUP. 59
Table 12 Decaffeinated coffee and skin cancer risk. Results of meta-analyses of prospective studies published after the 2005 SLR 61
Table 13 Decaffeinated coffee intake and skin cancer risk. Main characteristics of studies included in the linear dose-response meta-analysis. 62
Table 14 Total alcohol intake and skin cancer risk. Number of studies in the CUP SLR. 69
Table 15 Total alcohol intake and skin cancer risk. Summary of the linear dose-response meta-analysis in the 2005 SLR and 2016 CUP. 72
Table 16 Total alcohol intake and malignant melanoma risk. Results of meta-analyses of prospective studies published after the 2005 SLR. 74
Table 17 Total alcohol intake and skin cancer risk. Main characteristics of studies included in the linear dose-response meta-analysis. 76
Table 18 Total alcohol intake and skin cancer risk. Main characteristics of studies excluded from the linear dose-response meta-analysis 82
Table 19 Beer consumption and skin cancer risk. Main characteristics of identified studies. 94
Table 20 Wine consumption and skin cancer risk. Main characteristics of identified studies. 100
Table 21 Spirit consumption and skin cancer risk. Main characteristics of identified studies. 108
Table 22 Arsenic and skin cancer risk. Main characteristics of identified studies 114
Table 23 Retinol in diet and skin cancer risk. Results of meta-analyses of prospective studies published after the 2005 SLR. 118
Table 24 Retinol in diet and supplement and skin cancer risk. Results of meta-analyses of prospective studies published after the 2005 SLR. 120
Table 25 Retinol in supplement and skin cancer risk. Results of meta-analyses of prospective studies published after the 2005 SLR 123
Table 26 Total, dietary or supplemental retinol and skin cancer risk. Main characteristics of identified studies. 124
Table 27 Beta-carotene in supplement and skin cancer risk. Results of meta-analysis of RCTs published after the 2005 SLR. 136
Table 28 Total, circulating or supplemental beta-carotene and skin cancer risk. Main characteristics of identified studies. 138
Table 29 Lycopene in diet and skin cancer risk. Main characteristics of identified studies 150
Table 30 Lutein and zeaxanthin in diet and skin cancer risk. Main characteristics of identified studies 153
Table 31 Vitamin D in blood and skin cancer risk. Number of studies in the CUP SLR 155
Table 32 Vitamin D in blood and skin cancer risk. Summary of the linear dose-response meta-analysis in the 2005 SLR* and 2016 CUP 158
Table 33 Vitamin D in blood and skin cancer risk. Results of meta-analyses of prospective studies published after the 2005 SLR 159
Table 34 Vitamin D in blood and skin cancer risk. Main characteristics of studies included in the linear dose-response meta-analysis 160
Table 35 Vitamin D in diet and supplement and skin cancer risk. Results of meta-analysis published after the 2005 SLR 172
Table 36 Vitamin D, vitamin D (and calcium) and skin cancer risk. Main characteristics of identified studies 174
Table 37 Multivitamin use and skin cancer risk. Main characteristics of identified studies 180
Table 38 Folate, pyridoxine (B6) and cobalamin (B12) in supplement and MM risk. Results of meta-analyses of randomised control trials published after the 2005 SLR 188
Table 39 Folate, pyridoxine (B6) and cobalamin (B12) in supplement and skin cancer risk. Main characteristics of identified studies 189
Table 40 Selenium from supplements and NMSC risk. Results of meta-analyses of randomised control trials published after the 2005 SLR 194
Table 41 Circulating, toenail selenium or selenium supplement and skin cancer risk. Results of meta-analyses of prospective studies published after the 2005 SLR 196
Table 42 Blood, total, dietary or supplemental selenium and skin cancer risk. Main characteristics of identified studies. 196
Table 43 Caffeine intake and skin cancer risk. Main characteristics of studies included in the linear dose-response meta-analysis. 206
Table 44 Physical activity and skin cancer risk. Main characteristics of identified studies. 212
Table 45 BMI and skin cancer risk. Number of studies in the CUP SLR 218
Table 46 BMI and skin cancer risk. Summary of the linear dose-response meta-analysis in the 2005 SLR and 2016 CUP 222
Table 47 BMI and malignant melanoma risk. Results of meta-analyses of prospective studies published after the 2005 SLR. 227
Table 48 BMI and skin cancer risk. Main characteristics of studies included in the linear dose-response meta-analysis 228
Table 49 BMI and skin cancer risk. Main characteristics of studies excluded from the linear dose-response meta-analysis 239
Table 50 Relative risk of melanoma and BMI estimated using non-linear models 250
Table 51 Relative risk of BCC and BMI estimated using non-linear models 258
Table 52 Relative risk of SCC and BMI estimated using non-linear models 263
Table 53 BMI in early adulthood and skin cancer risk. Main characteristics of studies identified 265
Table 54 Weight and skin cancer risk. Main characteristics of studies identified. 267
Table 55 Change in weight, waist circumference, hip circumference, waist to hip ratio and skin cancer risk. Main characteristics of studies identified 273
Table 56 Height and skin cancer risk. Number of studies in the CUP SLR 277
Table 57 Height and melanoma risk. Summary of the linear dose-response meta-analysis in the 2005 SLR and 2016 CUP 280
Table 58 Height and malignant melanoma cancer mortality. Results of meta-analyses of prospective studies published after the 2005 SLR 282
Table 59 Height and skin cancer risk. Main characteristics of studies included in the linear dose-response meta-analysis 283
Table 60 Height and skin cancer risk. Main characteristics of studies excluded from the linear dose-response meta-analysis 288
Table 61 Birthweight and melanoma risk. Number of studies in the CUP SLR 295
Table 62 Birthweight and skin cancer risk. Summary of the linear dose-response meta- analysis in the 2005 SLR and 2016 CUP 296
Table 63 Birthweight and malignant melanoma risk. Results of meta-analyses of prospective studies published after the 2005 SLR 298
Table 64 Birthweight and skin cancer risk. Main characteristics of studies identified 298

List of abbreviations

List of Abbreviations used in the CUP Report

BCC	Basal cell carcinoma
BMI	Body Mass Index
CI	Confidence interval
CUP	Continuous Update Project
HR	Hazard ratio
HRT	Hormone replacement therapy
IRR	Incidence Rate Ratio
MM	Malignant melanoma
NA	Not available
NMSC	Non-melanoma skin cancer
NS	Not significant
OR	Odds ratio
RR	Relative risk
SCC	Squamous cell carcinoma
SLR	Systematic literature review
SMR	Standardized mortality ratio
WCRF	World Cancer Research Fund

List of Abbreviations of cohort study names used in the CUP report

AHS Agricultural Health Study
AHS, 1974
APCSC
ATBC
CCHS
CCPPS
CGPS
CNBSS
CPRD
DCH
EPIC
E3N
EPIC-Norfolk

EPIC-Oxford

HAHS
HPALS

FMCHES Mobile Clinic Health Examination Survey in Finland
Adventist Health Study
Asia-Pacific Cohort Studies Collaboration
Alpha-Tocopherol, Beta-Carotene Cancer Prevention
Copenhagen City Heart Study
Copenhagen Center for Prospective Population Studies
Copenhagen General Population Study
Canadian National Breast Screening Study
Clinical Practice Research Datalink
Danish Diet Cancer and Health Study
European Prospective Investigation into Cancer and Nutrition
Etude Epidemiologique aupres de femmes de l'Education Nationale
European Prospective Investigation into Cancer and Nutrition-
Norfolk
European Prospective Investigation into Cancer and Nutrition-
Oxford

Harvard Alumni Cohort
Harvard and Pennsylvania Alumni Study

HPFS	Health Professionals Follow-Up
ISOBCC	Isotretinoin-basal cell carcinoma prevention trial
KNHIC	Korean National Health Insurance Corporation Study
KPMCP	Kaiser Permanent Medical Care Program
KPNC	Kaiser Permanente Northern California
Me-Can	The Metabolic Syndrome and Cancer Project
MrOS	Osteoporotic Fractures in Men
MWS	Million Women Study
NHS	Nurses' Health Study
NHS II	Nurses' Health Study II
NSHDC	Northern Sweden Health and Disease Cohort
NSCS	Nambour Skin Cancer Study
NSPT	Norwegian Screening Programme for Tuberculosis
OFPACS	Oxford Family Planning Association Contraceptive Study
PHS	Physicians' Health Study
SCWC	Swedish Construction Workers Cohort
SKICAP	Skin Cancer Prevention Study
SU.VI.MAX	The Supplémentation en Vitamines et Minéraux Antioxydants
UBCOS	Study
USRT	Uppsala Birth Cohort Multigeneration Study
VHM-PP	United States Radiologic Technologists
VIP	The Vorarlverg Health Monitoring and Prevention Programme
VITAL	Västerbotten Intervention Project
WHI	Vitamins And Lifestyle Study
WHI-OS	Women's Health Initiative
WHI-DM	Women's Health Initiative Observational Study
	Women's Health Initiative Dietary Modification Trial

Background

The objective of the present systematic literature review is to update the evidence from prospective studies and randomised controlled trials on the association of foods, nutrients, physical activity, body adiposity and the risk of skin cancer in men and women.

This SLR does not present conclusions or judgements on the strength of the evidence. The CUP Panel will discuss and judge the evidence presented in this review.

The methods of the SLR are described in detail in the protocol for the CUP review on skin cancer (see Appendix 1).

Figure 1 Summary of judgements of the WCRF-AICR Second Expert Report, 2005

FOOD, NUTRITION, PHYSICAL ACTIVITY, AND CANCER OF THE SKIN

In the judgement of the Panel, the factors listed below modify the risk of cancer of the skin. Judgements are graded according to the strength of the evidence.

	DECREASES RISK	INCREASES RISK
Convincing		Arsenic in drinking water ${ }^{1}$
Probable	Retinol 2	Selenium supplements ${ }^{\text {² }}$

1 The International Agency for Research on Cancer has graded arsenic and arsenic compounds as Class 1 carcinogens. The grading for this entry applies specifically to inorganic arsenic in drinking water.
2 The evidence is derived from studies using supplements at a dose of 25000 international units/day. Applies only to squamous cell carcinoma.
3 The evidence is derived from studies using supplements at a dose of $200 \mu \mathrm{~g} /$ day.
4 The evidence is derived from studies using supplements at doses of 30 , and $50 \mathrm{mg} /$ day, and from foods containing beta-carotene. See chapter 4.2.

For an explanation of all the terms used in the matrix, please see chapter 3.5.1, the text of this section, and the glossary.

Modifications to the existing protocol

The protocol on skin cancer was prepared in 2005 (see Appendix 1). The modifications to the protocol are outlined in Appendix 2.

Timeline: The current review includes publications included in Medline up to April 19" 2016. The CUP team at ICL updated the search from June 8" 2005 to April 19" 2016 (see Flowchart).

Notes on methods:

The current review and meta-analyses include studies identified during the 2005 SLR and studies identified during the CUP SLR.

Skin cancer (any type or non-specified), malignant melanoma (cutaneous or non-specified), non-melanoma skin cancer, basal cell carcinoma, and squamous cell carcinoma were reviewed separately. The term melanoma has been used as an abbreviation of malignant melanoma in the text. Cutaneous melanoma has been used when the authors explicitly refers to cutaneous melanoma. The term "non-melanoma skin cancer", which refers to keratinocyte cancer, was used in this review for consistency with the reviewed studies.

Linear dose-response meta-analysis was conducted when at least two new publications on skin cancer were identified during the CUP with enough data for dose-response meta-analysis and if the total number of studies was five or more. Only the summary relative risks obtained using random effect models are shown. When the number of studies was insufficient to conduct a dose-response meta-analysis (or other analyses such as stratified analyses, or publication bias tests) this was indicated as "not enough studies".

The increment units used in the linear dose-response meta-analyses were those used in CUP SLR for other cancer sites, and may not be the same used in the meta-analyses in the 2005 SLR on skin cancer. However, when most of the identified studies reported servings or times, these were used as increment unit, as indicated in the Protocol.

Pooled analyses of cohort studies or randomized controlled trials were included with other individual studies in the meta-analysis when possible.

The results of studies on arsenic in drinking water, retinol, selenium, and beta-carotene are presented because the evidence of their association with skin cancer was judged probable, limited suggestive or unlikely in the 2007 Second Expert Report. The results of studies on some other exposures may also be described when meta-analyses were not possible.

The I ${ }^{2}$ statistic describes the proportion of total variation in study estimates that is due to heterogeneity (Higgins, 2002). Low heterogeneity might account for less than 30 per cent of the variability in point estimates, and high heterogeneity for substantially more than 50 per cent. These values are tentative, because the practical impact of heterogeneity in a metaanalysis also depends on the size and direction of effects. The interpretation of heterogeneity tests should be cautious when the number of studies is low. Visual inspection of the forest plots and funnel plots is recommended.

In the funnel plots, the outer dashed lines indicate the triangular region within which 95% of studies are expected to lie in the absence of publication or small study bias and heterogeneity. The orange line is the regression line corresponding to the Egger test for funnel-plot asymmetry.

Highest vs. lowest forest plots show the relative risk estimates for the highest vs. the reference category in each study.

The method of Hamling (Hamling, 2008) was used to recalculate relative risks (RRs) and confidence intervals (CIs) for a categorical comparison alternative to that reported by the study.
The dose-response forest plots show the relative risk per unit of increase for each study (most often derived by the CUP review team from categorical data). The relative risk is denoted by a box (larger boxes indicate that the study has higher precision and greater weight).
Horizontal lines denote 95% confidence intervals (CIs). Arrowheads indicate truncations. The diamond at the bottom shows the summary relative risk estimate and corresponding 95\% CI. The unit of increase is indicated in each figure and in the summary table for each exposure.

When the $95 \% \mathrm{CI}$ of a RR spanned 1.00 , the association was considered as statistically not significant. When the upper or lower CI was 1.00 , the association was considered statistically non-significant.
Dose-response plots showing the RR estimates for each exposure level in the studies are also presented for each exposure in the review. The relative risks estimates were plotted in the mid-point of each category level (x-axis) and connected through lines.

Exploratory non-linear dose-response meta-analyses were conducted only when there were five or more studies with three or more categories of exposure - a requirement of the restricted cubic splines method. Non-linear dose response curves were plotted using restricted cubic splines for each study, with knots fixed at percentiles $10 \%, 50 \%$, and 90% through the distribution. These were combined using multivariate meta-analysis. Non-linear metaanalyses are not included when there were not enough studies with the required data. The non-linear dose-response curve and the bubble graph were presented when a statistically significant non-linear association was observed. The interpretation of the non-linear doseresponse analyses should be based on the shape of the curve and not only on the p-value because the number of observations tended to be low. Bubble graphs are also presented to support the interpretation.
In many instances, HR is indicated as RR.
The statistical methods are described in the protocol. The analyses were performed in Stata 12.0.

Continuous Update Project: Results of the search

Figure 2 Flow chart of the search for skin cancer - Continuous Update Project
Search period June Week 22005 - April 19" 2016

*Publications identified in the searches of CUP SLRs on other cancers and through screening of references of relevant articles.

Results by exposure

Table 1 Number of relevant publications identified during the 2005 SLR and the CUP and total number of publications by exposure.

The exposure code is the exposure identification in the database. Only exposures identified during the CUP are shown. Studies are for all types of skin cancers reviewed

Exposure Code	Exposure Name	$\begin{gathered} \text { Number of } \\ \text { publications } \\ \text { (RCT/cohorts) } \\ \hline \end{gathered}$		Total number of publications
		$\begin{aligned} & \hline 2005 \\ & \text { SLR } \end{aligned}$	CUP	
1.	Patterns of diet			
1.3.1	Vegetarianism/Pescetarianism	0	1	1
1.3.2	Seventh Day Adventists Diet	1	0	1
1.4.1	Low fat diet	1	2	3
1.4.2	Healthy diet indices	0	2	2
1.4.3	Low-carbohydrate, high-protein diet score (LCHP)	0	1	1
1.4.4	Meat and fat dietary (MF) pattern/ Vegetable and fruit dietary (VF) pattern	0	1	1
1.4 .5	Organic food consumption	0	1	1
2.	Foods			
2.2	Fruit and (non-starchy) vegetables	2	1	3
2.2.1.2	Cruciferous vegetables	0	3	3
2.2.1.4	Green leafy vegetables	0	3	3
2.2.1.5	Red and yellow vegetables	0	3	3
2.2.2	Fruits	3	1	4
2.2.2.1	Citrus fruits	0	2	2
2.2.2.2	Other fruits	0	3	3
2.2.2.2.12	Vitamin A or C rich fruits	0	3	3
2.2.3	All vegetables	3	2	5
2.3	Pulses (legumes)	1	2	3
2.5.1.2	Processed meat	1	4	5
2.5.1.3	Red meat	0	3	3
2.5.1.4	Poultry	0	3	3
2.5.2	Fish	2	2	4
2.5.2.5	Oily fish	0	2	2
2.5.4	Eggs	2	2	4
2.6.0.3	Fats (all)	1	2	3
2.7.0	Milk and dairy products	1	3	4
3.	Beverages			
3.4.1	Sugary drinks	0	1	1
3.6.1	Coffee	5	6	11
3.6.1	Decaffeinated coffee	0	5	5

Exposure Code	Exposure Name	$\begin{gathered} \text { Number of } \\ \text { publications } \\ \text { (RCT/cohorts) } \\ \hline \end{gathered}$		Total number of publications
		$\begin{aligned} & 2005 \\ & \text { SLR } \end{aligned}$	CUP	
3.6.2	Tea	3	1	4
3.6.2.1	Black tea	0	3	3
3.7.1	Total alcoholic drinks	9	8	17
3.7.1.1	Beers	3	6	9
3.7.1.2	Wines	2	5	7
3.7.1.3	Spirits	1	5	6
4.	Food production, preservation processing and preparation			
4.1.2.7.2	Arsenic in diet	2	1	3
5.	Dietary constituents			
5.1.5	Glycaemic index	0	1	1
5.1.5	Glycaemic load	0	1	1
5.2.3	Monounsaturated fatty acids in diet	2	1	3
5.2.4	Polyunsaturated fatty acids in diet	2	1	3
5.2.4.1	$\mathrm{N}-3$ fatty acids in diet	1	1	2
5.2.4.1	$\mathrm{N}-3$ fatty acids in blood	0	1	1
5.2.4.1	Alpha-linolenic acid in diet	0	1	1
5.2.4.1	Alpha-linolenic acid in blood	0	1	1
5.2.4.1	EPA in diet	0	1	1
5.2.4.1	EPA in blood	0	1	1
5.2.4.1	DHA in diet	0	1	1
5.2.4.1	DHA in blood	0	1	1
5.2.4.1	DPA in diet	0	1	1
5.2.4.1	Arachidonic fatty acid	0	1	1
5.2.4.1	Arachidonic fatty acid in blood	0	1	1
5.2.4.2	Linoleic fatty acid in diet	0	1	1
5.2.4.2	Linoleic fatty acid in blood	0	1	1
5.2.4.2	N-6 fatty acids in diet	0	1	1
5.2.4.2	N-6 fatty acids in blood	0	1	1
5.2.5	Trans fatty acids in diet	0	1	1
5.5.1	Vitamin A in diet	2	1	3
5.5.1	Vitamin A in diet and supplement	1	1	2
5.5.1	Vitamin A in supplement	2	1	3
5.5.1	Retinol in blood	8	0	8
5.5.1.1	Retinol in diet	3	2	5
5.5.1.1	Retinol in diet and supplement	4	1	5
5.5.1.1	Retinol in supplement	3	1	4
5.5.1.2.2	Beta-carotene in blood	10	1	11
5.5.1.2.2	Beta-carotene in diet	2	1	3

Exposure Code	Exposure Name	Number ofpublications(RCT/cohorts)		Total number of publications
		$\begin{aligned} & 2005 \\ & \text { SLR } \end{aligned}$	CUP	
5.5.1.2.2	Beta-carotene in diet and supplement	4	1	5
5.5.1.2.2	Beta-carotene in supplement	7	2	9
5.5.1.2.2	Beta-carotene and alpha-tocopherol supplementation	0	1	1
5.5.1.2.3	Alpha-carotene in blood	2	1	3
5.5.1.2.3	Alpha-carotene in diet	2	1	3
5.5.1.2.4	Beta-cryptoxanthin in blood	2	1	3
5.5.1.2.4	Beta-cryptoxanthin in diet	2	1	3
5.5.2.1	Carotenoids in diet	1	1	2
5.5.2.3	Lycopene in diet	2	2	4
5.5.2.3	Lycopene in supplement	0	1	1
5.5.2.5	Lutein and zeaxanthin in blood	0	1	1
5.5.2.5	Lutein and zeaxanthin in diet	2	2	4
5.5.2.7	Lutein in supplement	0	1	1
5.5.3.1	Folate in diet	2	1	3
5.5.3.1	Folate in diet and supplement	2	1	3
5.5.9	Vitamin C in diet	3	1	4
5.5.9	Vitamin C in diet and supplement	4	1	5
5.5.9	Vitamin C in supplement	3	1	4
5.5.10	Vitamin D in blood	0	8	8
5.5.10	Vitamin D in diet	2	1	3
5.5.10	Vitamin D in diet and supplement	2	1	3
5.5.10	Vitamin D in supplement	0	1	1
5.5.10	Vitamin D (and calcium) in supplement	0	2	2
5.5.11	Vitamin E in diet	5	1	6
5.5.11	Vitamin E in diet and supplement	5	1	6
5.5.11	Vitamin E in supplement	5	1	6
5.5.11.1	Alpha-tocopherol in blood	6	1	7
5.5.18	Multivitamins supplement	8	5	13
5.5.19	Folate, pyridoxine (B6) and cobalamin (B12) in supplement	0	4	4
5.6.4	Selenium in blood	6	1	7
5.6.4	Selenium in diet	2	1	3
5.6.4	Selenium in supplement	3	4	8
5.7.6	Caffeine in diet	0	3	3
6.	Physical activity			
6.1	Total physical activity (overall summary measures)	1	2	3
6.1.1.1	Occupational physical activity	1	1	2

Exposure Code	Exposure Name	Number ofpublications(RCT/cohorts)		Total number of publications
		$\begin{aligned} & 2005 \\ & \text { SLR } \end{aligned}$	CUP	
6.1.1.2	Recreational physical activity	3	1	4
6.1.1.4	Walking	0	1	1
6.3.3	Heavy work occupation	1	1	2
8.	Anthropometry			
8.1.1	BMI	15	23	38
8.1.1	BMI in early adulthood	0	2	2
8.1.3	Weight	5	5	10
8.1.6	Change in weight	0	2	2
8.2.1	Waist circumference	0	4	4
8.2.2	Hip circumference	0	2	2
8.2.3	Waist to hip ratio	0	4	4
8.3.1	Height (and proxy measures)	6	15	21
8.4.1	Birthweight	1	5	6

1 Patterns of diet

No meta-analysis was conducted.

Randomized controlled trials

1.4.1 Low fat diet

One study on melanoma and NMSC (two publications) were identified in the CUP. One study (one publication on NMSC) was identified in the 2005 SLR.

Malignant melanoma

In the WHI randomised controlled trial, postmenopausal women were assigned to either the low-fat diet intervention (with the goal to decrease fat intake to 20% or less of total energy intake and increase consumption of fruits, vegetables and grains) or usual diet. The study reported no effect of low-fat diet on melanoma risk (RR: 1.04; 95\% CI= 0.82-1.32, 279 cases). There was a significant interaction of baseline fat intake and group assignment ($\mathrm{P}_{\text {ireseation }}=$ 0.006). Women in the intervention group with higher total fat intake at baseline had a statistically significant increased melanoma risk (RR: 1.48; 95\% CI=1.06-2.07), while women with lower fat intake had a statistically non-significant lower risk of melanoma Pinteraction (RR: 0.72; 95\% CI= 0.50-1.02) (Gamba, 2013).

No effect of low-fat diet had been reported in a previous publication of the same study (RR: $1.04 ; 95 \% \mathrm{CI}=0.78-1.38$, Prentice, 2007). Melanoma was not a primary outcome of the study.

Non-melanoma skin cancer

The WHI randomised controlled trial, found no effect of low-fat diet on the risk of NMSC (RR: 0.98; 95\% CI= 0.92-1.04, 4907 cases; Gamba, 2013).

In a small trial in United States, 135 patients with previous diagnosis of NMSC were randomly assigned to low fat diet intervention (20% of calories from fat) or usual diet. NMSC occurrence in the dietary intervention group was statistically significantly lower ($\mathrm{p}<0.01$) than in the non-intervention group during the last eight months of two-years evaluation period (Black, 1998; Black, 1995).

Cohort studies

1.3.1 Vegetarianism/ Pescetarianism

No studies were identified in the 2005 SLR and one study on melanoma was identified in the CUP.

Malignant melanoma

A publication including data from the Oxford Vegetarian study and EPIC-Oxford, United Kingdom, reported that vegetarians had a statistically non-significant decreased risk of melanoma compared to meat eaters (RR: $0.89 ; 95 \% \mathrm{CI}=0.61-1.29,164$ cases). Similar results were found for pescetarians (RR: $0.90 ; 95 \% \mathrm{CI}=0.55-1.47,136$ cases) (Key, 2009).

1.3.2 Seventh Day Adventists Diet

One study on melanoma was identified in the 2005 SLR and no new studies were identified in the CUP.

Malignant melanoma

In a prospective cohort study in California, statistically non-significant increased risk of melanoma among Adventist men (SMR: 1.77; 95\% CI=0.99-2.43, 13 cases) and statistically significant increased risk among Adventist women (SMR: 1.71; 95\% CI=1.03-2.40, 14 cases) was observed, compared to residents of Connecticut. Most Adventists do not consume tobacco, alcohol or pork; approximately half of the population follow a lactoovovegetarian lifestyle (Mills, 1994).

1.4.2 Healthy lifestyle indices

No studies were identified in the 2005 SLR and two new studies (two publications on melanoma, one of which also reported on NBSC) were identified in the CUP. Both indices include physical activity as a component.

Malignant melanoma

In the NIH-AARP Diet and Health Study, higher adherence to a score based on the American Cancer Society (ACS) prevention guidelines was associated with increased melanoma risk among men (RR: 1.19; 95\% CI= 1.07-1.33, p-trend $=0.002,3538$ cases) and statistically non-significantly among women (RR: $1.21 ; 95 \% \mathrm{CI}=0.98-1.49$, p-trend= $0.04,1$ 210 cases) compared to lower adherence (Kabat, 2015). The score included body weight, physical activity, healthy dietary choices and limited alcohol intake. The analyses were not adjusted for UV exposure or skin sensitivity (skin, eye or hair colour) because these data were not available.

A health index based on the recommendations of the French National Program for Health and Nutrition (PNNS), the French Food Safety Agency (ANSES) and World Health Organization (WHO), was applied in the French E3N prospective cohort of women. The lifestyle behaviours considered were weight control (BMI), recreational physical activity, fruit and vegetable consumption, smoking and alcohol consumption. Higher score of adherence was statistically non-significantly positively associated with melanoma in women (RR: 1.44; $95 \% \mathrm{CI}=0.88-2.37$, 391 cases) (Dartois, 2014).

Nonbasal skin cancer

Higher adherence to the French Health Index was positively associated with nonbasal skin cancer ((ICD-10 C43-C44, excluding ICD-O-3M809-M811), in the French E3N cohort (RR for highest vs. lowest score: 1.75 (95% CI: 1.17-2.62) p-trend <0.001 ($\mathrm{n}=686$) (Dartois, 2014).

1.4.3 Low-carbohydrate, high-protein diet score (LCHP)

No studies were identified in the 2005 SLR and one new study (one publication on melanoma) was identified in the CUP.

Malignant melanoma

A Swedish large population-based cohort study reported that a low-carbohydrate, highprotein (LCHP) diet score was statistically non-significantly inversely associated with melanoma risk comparing highest vs. lowest score (RR: 0.76 ; 95\% CI= $0.42-1.37$, p-trend= $0.509,105$ cases). Intake of macronutrients was calculated from an 84 or 65 -item FFQs as well as photo-based portion-sized estimations (Nilsson, 2013).

1.4.4 Meat and fat dietary (MF) pattern/ Vegetable and fruit dietary (VF) pattern

No studies were identified in the 2005 SLR and one new study (one publication on BCC and SCC) was identified in the CUP.

Basal cell carcinoma

The Nambour Skin Cancer Study examined the association of dietary patterns derived by principal component analysis and BCC risk. The meat-fat (MF) pattern was characterized by higher weight of red and processed meat, discretionary fat, processed grains, snacks, sweets drinks and high-fat dairy products. The fruits and vegetables pattern (VF) had higher weight of vegetables, fruit, unprocessed grains, fish and low-fat dairy products. No statistically significant associations with BCC were found when comparing higher to lower scores of meat-fat (MF) pattern (RR: $1.31 ; 95 \% \mathrm{CI}=0.85-2.04$, p-trend $=\mathrm{NS}$) and VF pattern (RR: 1.14; 95\% CI= 0.79-1.65, p-trend= NS) (Ibiebele, 2007).

Squamous cell carcinoma

A statistically non-significant positive trend of the MF pattern with SCC risk was observed (RR: $1.83 ; 95 \% \mathrm{CI}=1.00-3.37$, p-trend= 0.05). However, the association was reversed when participants with history of skin cancer were excluded from the analysis (RR: 0.87; 95\% CI= 0.32-2.34, p-trend= NS). Non-statistically significant inverse association was found for the VF pattern (RR: 0.83; 95\% CI= 0.47-1.44, p-trend= NS) (Ibiebele, 2007).

1.4.5 Organic food consumption

No studies were identified in the 2005 SLR and one new study (one publication on melanoma) was identified in the CUP.

Malignant melanoma

In the MWS in United Kingdom, the consumption of organic products "usually or always" compared with "never" was not associated with melanoma (RR: 0.90; 95\% CI= 0.78-1.05, 2 434 cases) (Bradbury, 2014).

Table 2 Dietary patterns and skin cancer risk. Main characteristics of identified studies.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure Assessment	Outcome	Comparison/ Intervention	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	Cohort W	9.3 years	registers			consumption of organic food		category, smoking, BMI, physical activity, alcohol intake, height, parity, age at first child birth, fibre intake, type of meat
$\begin{gathered} \text { Dartois, } 2014 \\ \text { SKI22201 } \\ \text { France } \end{gathered}$	E3N EPIC- France, Prospective Cohort, Age: 43-68 years, W	$\begin{gathered} 391 / \\ 64732 \\ 8 \text { years } \end{gathered}$	Self- report verified by reviewing medical and pathological records by physicians	Selfadministered questionnaire	Incidence MM	$\begin{aligned} & \text { Health Index } \\ & \text { categories: } \\ & 4.5 ; 5 \text { vs. } 0 ; 2 \end{aligned}$	1.44 (0.88-2.37)	Age at first child birth, age at menarche, educational level, family history of cancer in first degree relatives, menopausal oestrogen use, menopausal status, number of children, professional activity, residence, use of oral contraception
Nilsson, 2013	VIP,	105/	Cancer registry	FFQ \& 24-hr	Incidence	Low	0.76 (0.42-1.37)	Age, alcohol,

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Author, Year, WCRF Code, Country \& Study name, characteristics \& \begin{tabular}{l}
Cases/ \\
Study size \\
Follow-up \\
(years)
\end{tabular} \& Case ascertainment \& \begin{tabular}{l}
Exposure \\
Assessment
\end{tabular} \& Outcome \& \begin{tabular}{l}
Comparison/ \\
Intervention
\end{tabular} \& \[
\begin{gathered}
\text { RR }(95 \% \mathrm{CI}) \\
\text { Ptrend }
\end{gathered}
\] \& Adjustment factors \\
\hline Sweden \& Prospective Cohort, Age: 30- years, W \& \begin{tabular}{l}
31185 \\
9.7 years
\end{tabular} \& \& dietary recall \& MM \& carbohydrate and high protein diet score : \(14-20\) vs. 2-8 points \& Ptrend: 0.509 \& educational level, energy intake, obesity, saturated fat, sedentary behaviour, smoking \\
\hline \[
\begin{gathered}
\text { Key, } 2009 \\
\text { SKI22186 } \\
\text { UK }
\end{gathered}
\] \& \begin{tabular}{l}
EPIC-Oxford, \\
Prospective Cohort, Age: 20-89 years, M/W
\end{tabular} \& \(164 /\)
61566
12.2 years \& UK national health service central register \& \begin{tabular}{l}
Semi- \\
quantitative FFQ
\end{tabular} \& \begin{tabular}{l}
Incidence \\
MM
\end{tabular} \& \begin{tabular}{l}
Vegetarians vs. meat eaters \\
Pescetarians vs. meat eaters
\end{tabular} \& \(0.89(0.61-1.29)\)
0.90 (0.55-1.47) \& Age, sex, alcohol consumption, BMI, physical activity level, smoking, study/method of recruitment \\
\hline \begin{tabular}{l}
Ibiebele, 2007 \\
Australia
\end{tabular} \& \begin{tabular}{l}
NSCS, \\
Prospective \\
Cohort, \\
Age: 20-69 \\
years, \\
M/W
\end{tabular} \& \[
\begin{gathered}
267 / \\
1360 \\
11 \text { years }
\end{gathered}
\]
\[
127 /
\] \& Full body examination and then histological confirmed \& FFQ \& \begin{tabular}{|c|}
\hline \begin{tabular}{c}
Tumour-based \\
occurrence \\
BCC
\end{tabular} \\
\hline Tumour-based \\
occurrence \\
SCC \\
\hline Tumour-based \\
occurrence \\
SCC \\
History of skin cancer
\end{tabular} \& \begin{tabular}{l}
Meat and Fat dietary pattern: T3 vs. T1 \\
High consumption of red meats, processed meats discretionary fat, processed grains,
\end{tabular} \& \(1.31(0.85-2.04)\)
1.83 (1.00-3.37)

3.77 (1.65-8.63)
Ptrend: 0.002 \& Age, sex, skin colour, skin elastosis, smoking status, supplement use, burn-tan propensity of the skin, total energy, treatment

\hline
\end{tabular}

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure Assessment	Outcome	Comparison/ Intervention	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
					Tumour-based occurrence SCC No history of skin cancer	snack, sweet drinks, and highfat dairy products	0.87 (0.32-2.34)	allocation
					Tumour-based occurrence BCC	Vegetable and fruit dietary pattern T3 vs. T1	1.14 (0.79-1.65)	
					Tumour-based occurrence SCC	High consumption of veggies, fruit, unprocessed grains, fish and low-fat dairy products	0.83 (0.47-1.44)	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure Assessment	Outcome	Comparison/ Intervention	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
Black, 1998 SKI01983 USA (Same results in SKI02773 Black, 1995)	Low Fat Diet Trial, Randomised Control Trial, M, Patients presenting with NMSC	57 intervention group/ 58 control group	Incoming patients	Four-day food records (Monday, Wednesday, Saturday and Sunday)	Cumulative number of NMSC	Intervention group vs. Control group Intervention: adopt a diet with 20% of total intake as fat	Intervention group: 0.30 Control group: 0.56 Cancer occurrence between groups during the last 8 months of evaluation period: P -value <0.01	
Mills, 1994 SKI10108 USA	AHS, 1974, Prospective Cohort, Age: 25- years, M/W, Seventh-day Adventists	$\begin{gathered} 24 / \\ 34198 \end{gathered}$ 23/	Church members address lists	Questionnaire	Incidence MM Men Women	Seventh-day Adventists vs. General population	1.77 (0.99-2.43) 1.71 (1.03-2.40)	Age, calendar year

2 Foods

2.2.3 All vegetables

Cohort studies

Summary
Four studies (three publications on melanoma and BCC) were identified in the 2005 SLR and one new study (two publications on skin cancer, SCC and BCC) were identified in the CUP. No meta-analysis was conducted.

Skin cancer

In the NIH-AARP study (George, 2009), vegetable intake (excluding potatoes) was not associated with skin cancer risk in men (1634 cases) (RR: 0.90, $95 \% \mathrm{CI}=0.76-1.05$) when comparing $1.1-3.25$ vs. $0-0.44$ cup equivalents per $1000 \mathrm{kcal} / \mathrm{day}$) and women (577 cases) (RR: $1.04,95 \% \mathrm{CI}=(0.79-1.37$, comparing $1.44-4.38$ vs. $0-0.56$ cup equivalents per 1000 kcal/day).

Malignant melanoma

In the NHS and NHS II cohort studies combined, there was no association of total vegetable intake and melanoma risk (RR: $1.01,95 \% \mathrm{CI}=(0.68-1.50)$, comparing ≥ 5 vs. <2 servings/day) (Feskanich, 2003).

Basal cell carcinoma

In the pooled analysis of NHS and HPFS cohorts, total vegetable intake (26 items) was not associated with incidence of BCC (20 840 cases) (RR: $0.97,95 \%$ CI= (0.92-1.03), comparing ≥ 5 vs. <2 times/day) (Wu, 2015a).

In the EPIC-Norfolk study, the unadjusted relative risk estimate for an increment of $62 \mathrm{~g} / \mathrm{day}$ of intake of all vegetables was $1.10,95 \% \mathrm{CI}=0.88-1.38$ (Davies, 2002).

Squamous cell carcinoma

In the pooled analysis of NHS and HPFS cohorts, total vegetable intake (26 items) was statistically non-significantly inversely associated with incidence of SCC (3544 cases) (RR: $0.88,95 \% \mathrm{CI}=0.77-1.01$, comparing ≥ 5 vs. <2 times $/$ day) ($\mathrm{Wu}, 2015 \mathrm{a}$).

Table 3 Vegetable intake and skin cancer risk. Main characteristics of identified studies.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
$\begin{gathered} \mathrm{Wu}, 2015 \mathrm{a} \\ \text { USA } \end{gathered}$	HPFS Prospective	$\begin{gathered} 9033 / 41622 \\ 26 \text { years } \end{gathered}$	Self-report verified through medical and pathologic reports	Validated FFQ	Incidence, BCC	≥ 5 vs. <2 times/day	1.00 (0.92-1.08)	Age, hair colour, number of arm moles, sunburn susceptibility as a child/ adolescent, family history of melanoma, number of blistering sunburns, cumulative UV flux since baseline, average time spent in direct sunlight since high school, sunscreen use, BMI, physical activity, smoking status, alcohol intake, menopausal status and MHT use in women
	Age:40-75 years, M, health professionals	$1540 /$			SCC		0.90 (0.73-1.10)	
	NHS Prospective	$\begin{gathered} 11807 / 63810 \\ 24 \text { years } \end{gathered}$			BCC		0.95 (0.88-1.02)	
	W, registered nurses	$2004 /$			SCC		0.87 (0.72-1.04)	
	Pooled (HPFS	$\begin{aligned} & 20840 / \\ & 105432 \end{aligned}$			BCC		0.97 (0.92-1.03)	
		$3544 /$			SCC		0.88 (0.77-1.01)	
$\begin{gathered} \text { George, } \\ 2009 \\ \text { SKI22179 } \\ \text { USA } \end{gathered}$	NIH-AARP, Prospective Cohort, Age: 50-71	$\begin{gathered} 1634 / \\ 288109 \\ 6.9 \text { years (men } \\ \text { and women) } \end{gathered}$	Linkage with cancer registry databases	Self- administered validated 124item FFQ	Incidence, skin cancer, men	$\begin{aligned} & \text { 1.1-3.25 vs. } 0- \\ & 0.44 \text { cup } \\ & \text { equivalents } \\ & \text { per1000 } \end{aligned}$	$\begin{gathered} 0.90 \text { (0.76-1.05) } \\ \text { Ptrend:0.332 } \end{gathered}$	Age, alcohol, BMI, educational level, energy intake, family history of cancer, fruits, marital status, physical activity, race,

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
						kcal/day		smoking
		577/195 229			Women	$\begin{aligned} & 1.44-4.38 \mathrm{vs} \text {. } \\ & 0-0.56 \text { cup } \\ & \text { equivalents per } \\ & 1000 \mathrm{kcal} / \mathrm{day} \end{aligned}$	$\begin{gathered} 1.04 \text { (0.79-1.37) } \\ \text { Ptrend:0.60 } \end{gathered}$	Additionally adjusted for MHT
$\begin{gathered} \text { Feskanich, } \\ 2003 \\ \text { SKI00696 } \\ \text { USA } \end{gathered}$	NHS and NHS II, Prospective Cohort, Age: 25-77 years, W, nurses	$\begin{gathered} 414 / \\ 162078 \\ >1.6 \text { million } \\ \text { person-years } \end{gathered}$	Medical records	FFQ	Incidence, MM	$\begin{gathered} \geq 5 \mathrm{vs} .<2 \\ \text { servings/day } \end{gathered}$	$\begin{gathered} 1.01(0.68-1.50) \\ \text { Ptrend:0.81 } \end{gathered}$	Age, area of residence, BMI, energy intake, family history of specific cancer, follow-up cycle, hair colour, height, menopausal status, multivitamin supplement intake, number of moles, number of sunburns, oral contraceptive use, parity, MHT use, skin reaction, use of supplements
$\begin{gathered} \text { Davies, } \\ 2002 \\ \text { SKI00989 } \\ \text { UK } \end{gathered}$	EPIC-Norfolk, Nested Case Control, Age: 65 (W), 67.8 (M), M/W	$\begin{aligned} & 109 / \\ & 356 \end{aligned}$	East Anglian Cancer Registry	Validated selfreported 7-day food diary	Incidence, BCC	Per $62 \mathrm{~g} /$ day	1.10 (0.88-1.38)	Unadjusted
$\begin{gathered} \text { van Dam, } \\ 2000 \\ \text { SKI01672 } \\ \text { USA } \end{gathered}$	HPFS, Prospective Cohort, Age: 40-75	$\begin{gathered} 3190 / \\ 43217 \end{gathered}$	Family members, coworkers, postal authorities,	Validated 131item FFQ	Incidence, BCC	$\begin{gathered} >5 \text { vs. }<2 \\ \text { servings/day } \end{gathered}$	1.06 (0.95-1.20)	Age, 2 year follow-up periods, energy intake, frequency of physical examinations, hair colour, major ancestry, mean

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	years, M, health professionals		National Death Index					solar radiation, smoking habits

5.1 Meat

This section includes studies in which the item "Meat" was reported. The item includes any type of white and red meat.

Cohort studies

Two studies (two publications on melanoma and BCC) were identified in the 2005 SLR and no new studies were identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

A large Norwegian prospective study did not find association of meat consumption and melanoma in men and women (data not shown in the publication) (Veierod, 1997).

Basal cell carcinoma

Intake of meat and meat dishes was not related with BCC in the EPIC-Norfolk cohort (RR: $0.92 ; 95 \% \mathrm{CI}=0.73-1.18$ per $56.1 \mathrm{~g} /$ day increase of meat and meat dishes, 109 cases) (Davies, 2002).

2.5.1.2 Processed meat

Cohort studies

One study (one publication on BCC) was identified in the 2005 SLR and one new study (four publications on melanoma, BCC and SCC) was identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

In the NIH-AARP study (Cross, 2007), processed meat intake was statistically significantly inversely associated with melanoma risk (RR: 0.82; 95\% CI=0.71-0.96 for the highest compared to the lowest intake of processed meat, p-trend=0.13, 1932 cases). Processed meat was defined as bacon, red meat sausage, poultry sausage, luncheon meats, cold cuts, ham, regular hot dogs and low-fat hot dogs made from poultry. The analyses were adjusted for age, sex, education, marital status, family history of cancer, race, BMI, smoking, frequency of vigorous physical activity , total energy intake, alcohol intake, and fruit and vegetable consumption.

Basal cell carcinoma

In the Nambour Skin Cancer Study highest vs. lowest processed meat intake was statistically non-significantly positively associated with BCC (RR: 1.30; 95\% CI= 0.90-1.90, p-trend= $0.21,217$ cases, tumour based-analysis) (van der Pols, 2011). Processed meat was defined as sausages, bacon, processed meat, frankfurter/saveloy, sausage roll.

No association was found in the EPIC-Norfolk cohort, RR: 1.06; 95\% CI=0.84-1.34 per $27.4 \mathrm{~g} /$ day increase of processed meat, 109 cases (Davies, 2002).

Squamous cell carcinoma

The Nambour Skin Cancer Study reported no association of processed meat consumption and SCC in participants with history of skin cancer (RR: 1.13; 95\% CI=0.56-2.29 for the highest vs. lowest comparison, p-trend=NS, tumour-based analysis) (Ibiebele, 2007).

Another publication also using the Nambour Skin Cancer Study and a performing tumourbased analysis found similar results for participants with history of skin cancer (RR: 1.41; $95 \% \mathrm{CI}=0.65-3.02$, p-trend $=0.44$ for highest vs. lowest intake). In participants without a history of skin cancer the RR was $0.86 ; 95 \% \mathrm{CI}=0.33-2.24$, p -trend $=0.80$ (Hughes, 2006).

2.5.1.3 Red and processed meat

Note: The studies included in this section included processed meat items in the definition of "Red meat".

Cohort studies

No studies were identified in the 2005 SLR and two studies (three publications on melanoma, BCC and SCC) were identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

In the NIH-AARP study there was no association between red meat consumption and melanoma (RR: 0.95; 95\% CI=0.81-1.11 for the highest vs. lowest comparison, p-trend= $0.54,1541$ cases) (Cross, 2007). Red meat was defined as all types of beef, pork and lamb which included bacon, cold cuts, ham, hamburger, hot dogs, liver, sausage and steak.

Basal cell carcinoma

In the Nambour Skin Cancer Study (van der Pols, 2011), there was a statistically nonsignificant inverse association red meat consumption and BCC (RR: 0.80; 95\% CI=0.50-1.30 for the highest vs. lowest comparison, p-trend=0.40, 217 cases). The food group "meat" included beef, pork, lamb as main dish; ham, beef, pork in sandwich; beef, pork, lamb in mixed dishes; mince in tomato sauce; other mince meat dishes; meat pie; hamburger patty; liver. The analyses were tumour-based.

Squamous cell carcinoma

In the Nambour Skin Cancer Study, no association between SCC and red meat consumption was observed among participants with history of skin cancer (RR: 1.02; 95\% CI= 0.49-2.15 for the highest vs. lowest comparison, p-trend=NS) (Ibiebele, 2007). In another publication of the same cohort (Hughes, 2006), the association of SCC and consumption of red meat in all participants was RR: $0.62 ; 95 \% \mathrm{CI}=0.34-1.13$ for the highest vs. lowest comparison, p trend $=0.13,127$ cases. In analysis stratified by skin cancer history, the RR was $0.86 ; 95 \%$ $\mathrm{CI}=0.33-2.24$, p-trend $=0.80$ in participants with no history of skin cancer and RR: $1.41 ; 95 \%$ $\mathrm{CI}=0.65-3.02$, p -trend $=0.44$ in participants with skin cancer. The analyses were tumourbased in both publications.

2.5.1.4 Poultry

Cohort studies

No studies were identified in the 2005 SLR and two studies (three publications on melanoma, BCC and SCC) were identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

Melanoma was not associated with consumption of poultry in the NIH-AARP study (RR for highest vs. lowest intakes: $1.03 ; 95 \% \mathrm{CI}=0.91-1.17$, p-trend $=0.86,2960$ cases and for $10 \mathrm{~g} / 1000 \mathrm{kcal}$ increment, p -trend $=0.35$ (Daniel, 2011). Models were adjusted for red meat and fish intake.

Basal cell carcinoma

Poultry intake was not associated with BCC (RR: $1.00 ; 95 \% \mathrm{CI}=0.70-1.50$ for highest vs. lowest intake, p-trend $=0.94,217$ cases) in the Nambour Skin Cancer Cohort. The analyses were tumour-based (van der Pols, 2011).

Squamous cell carcinoma

Poultry intake was not associated with SCC risk (RR: $0.93 ; 95 \% \mathrm{CI}=0.53-1.62$, p-trend= $0.84,127$ cases) in the Nambour Skin Cancer Cohort. The results did not change substantially when participants with antecedents of skin cancer were excluded from the analysis (RR: 0.55 ; $95 \% \mathrm{CI}=0.22-1.40$, p-trend $=0.20$). The analyses were tumour-based (Hughes, 2006).

2.5.1.5 Offal

Cohort studies

One study (one publication on BCC) was identified in the 2005 SLR and no new studies were identified in the CUP.

No meta-analysis was conducted.

Basal cell carcinoma

No association was observed in the EPIC-Norfolk study (RR: 1.06; 95\% CI= 0.89-1.28 per $3.48 \mathrm{~g} /$ day increase of offal consumption, 109 cases) (Davies, 2002).

2.5.2 Fish

Cohort studies

Two studies (two publications on melanoma and SCC) were identified in the 2005 SLR and two new studies (two publications on melanoma and BCC) were identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

Fish intake was positively associated with melanoma risk in the NIH-AARP study (RR: 1.19; $95 \% \mathrm{CI}=1.05-1.34$ for the highest vs. the lowest comparison, $\mathrm{p}-\mathrm{trend}=0.01,2960$ cases)
(Daniel, 2011). The risk increase seemed to be driven by intake of canned tuna (RR for highest vs. lowest quintile: 1.30 (95% CI 1.16-1.46); Ptrend <0.0001). Models were adjusted for poultry and red meat intake, and other factors, but not for UV exposure or skin sensitivity.

A large Norwegian prospective study did not find association of fish consumption (as fish sandwich spread main meals with fish liver or fish as main dish) and melanoma in men and women (data not shown in the publication) (Veierod, 1997).

Basal cell carcinoma

Fish intake was not related to BCC in the EPIC-Norfolk study (RR: 1.12; 95\% CI= 0.89-1.39, 109 cases for $36.2 \mathrm{~g} /$ day increase of fish and selfish consumption) (Davies, 2002).

Squamous cell carcinoma

In the Nambour Skin Cancer Cohort, a non-statistically significant positive association of seafood consumption with SCC with was observed (RR: 1.29; 95\% CI= 0.72-2.3 for the comparison of highest vs. lowest seafood consumption, p-trend= 0.43 , 127 cases) (Hughes, 2006). An analysis including only participants without history of skin cancer showed similar results, RR: 1.26; 95% CI= 0.48-3.29, p-trend= 0.66 . Authors reported tumour-based analyses. Seafood was defined as tuna, sardines, other fish, other seafood.

2.5.2.5 Oily fish

Cohort studies

No studies were identified in the 2005 SLR and one study (two publications on BCC and SCC) was identified in the CUP.

No meta-analysis was conducted.

Basal cell carcinoma

Oily fish consumption, defined as tuna, salmon and sardines, was statistically nonsignificantly positively associated with BCC in the Nambour Skin Cancer Study (RR: 1.30; $95 \% \mathrm{CI}=0.90-1.90$ for the highest vs. lowest analysis, p-trend= $0.22,217$ cases). The analysis was tumour-based (van der Pols, 2011).

Squamous cell carcinoma

In the same study, the Nambour Skin Cancer Cohort, there was a not statistically significant inverse association between oily fish and SCC, RR: $0.78 ; 95 \% \mathrm{CI}=0.43-1.40$, p-trend=NS (Ibiebele, 2007).

2.5.4 Egg

Cohort studies

Two studies (on melanoma and BCC) were identified in the 2005 SLR and one new study (on BCC and SCC) was identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

A large Norwegian cohort study reported no association of egg consumption and melanoma risk in men and women (108 cases) (results not shown in the publication) (Veierod, 1997).

Basal cell carcinoma

A marginal positive association of egg intake and BCC was found in the Nambour Skin Cancer Cohort, in tumour-based analysis (RR: 1.50; 95\% CI= 1.00-2.20 for highest vs. lowest intake, p-trend $=0.06,217$ cases) (van der Pols, 2011).

In EPIC-Norfolk, BCC was not related with egg and egg products consumption (RR: 1.05; $95 \% \mathrm{CI}=0.83-1.33$ for $19.6 \mathrm{~g} /$ day increase, 109 cases) (Davies, 2002).

Squamous cell carcinoma

In the Nambour Skin Cancer Cohort, SCC risk was not related to egg and egg products consumption, RR for $19.6 \mathrm{~g} /$ day increase: $0.95 ; 95 \% \mathrm{CI}=0.54-1.68$, p-trend $=0.87$ (Hughes, 2006). Analysis excluding participants with skin cancer history revealed statistically nonsignificant positive association, RR: $1.23 ; 95 \% \mathrm{CI}=0.48-3.13$, p -trend $=0.66$.

Table 4 Meat, poultry, fish and egg consumption and skin cancer risk. Main characteristics of studies identified.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
						No history of skin cancer History of skin cancer	$\begin{gathered} 0.55(0.22-1.40) \\ \text { Ptrend:0.20 } \\ 1.27(0.63-2.56) \\ \text { Ptrend:0.44 } \end{gathered}$	
						Fish and other seafood T3 vs. T1 No history of skin cancer History of skin cancer	1.29 (0.72-2.30) Ptrend:0.43 1.26 (0.48-3.29) Ptrend:0.66 1.43 (0.67-3.05) Ptrend:0.40	
						Eggs T3 vs. T1 No history of skin cancer History of skin cancer	0.95 (0.54-1.68) Ptrend:0.87 1.23 (0.48-3.13) Ptrend:0.66 0.78 (0.37-1.61) Ptrend:0.50	
Davies, 2002SKI00989UK	EPIC-Norfolk, Nested Case Control, M/W	$\begin{array}{r} 109 / \\ 1976 \end{array}$			IncidenceBCC	Meat and meat dishes per $56.1 \mathrm{~g} /$ day	0.93 (0.73-1.18)	-
						Processed meat per $27.4 \mathrm{~g} /$ day	1.06 (0.84-1.34)	
						Offal per $3.48 \mathrm{~g} /$ day	1.06 (0.89-1.27)	
						Fish and shellfish per $36.2 \mathrm{~g} /$ day	1.12 (0.89-1.39)	

3 Beverages

3.6.1 Coffee

Cohorts

Four studies (five publications on melanoma, NMSC, BCC, and SCC) were identified in the 2005 SLR and seven new studies (six publications on melanoma, BCC and SCC) were identified in the CUP.

Dose-response meta-analyses were conducted on coffee intake and melanoma, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC).

Table 5 Coffee intake and skin cancer risk. Number of studies in the CUP SLR.

	Number
Studies identified	11 (11 publications)
Studies included in forest plot of highest compared with lowest exposure	9 (7 publications) melanoma
	NMSC risk - not enough studies
	$5(4$ publications) BCC
	$4(3$ publications) SCC
Studies included in linear dose-response meta- analysis	7 (7 publications) melanoma
	NMSC risk - not enough studies
	$3(3$ publications) BCC
	$3(3$ publications) SCC
Studies included in non-linear dose-response meta- analysis	6 (4 publications) melanoma
	NMSC, BCC, SCC - not enough studies

Skin cancer

Summary
Main results:
Seven studies out of 9 (8 publications) identified could be included in the dose-response meta-analysis on melanoma, 3 studies out of 5 (4 publications) on BCC, and 3 studies out of 4 (3 publications) on SCC.

Malignant melanoma

Coffee intake was not statistically significantly associated with melanoma risk (RR for 1 cup/day: $0.96,95 \% \mathrm{CI}=0.92-1.00$). Moderate heterogeneity was observed.
Of the two studies excluded from the dose-response meta-analysis, one study with 19 cases of melanoma reported a relative risk of 2.63 for the highest vs. lowest comparison (p-
trend $=0.16$) (Jacobsen, 1986) and a small study (11 male cases) in the Harvard Alumni cohort reported no association (relative risks not shown in the publication) (Whittemore, 1985).

The test of publication bias was statistically non-significant. Visual inspection of the funnel plot showed asymmetry driven by the smaller study (Veierod, 1997) from Norway that reported a strong inverse association. Exclusion of this study did not substantially modify the overall estimate.

In the study including the NHS, NHSII and PHS (Wu, 2015c), an association with coffee was more apparent in women ($\geq 393 \mathrm{mg} /$ day vs. . $<60 \mathrm{mg} /$ day: $\mathrm{HR}=0.70,95 \% \mathrm{CI}=0.58$ $0.85 ;$ Ptrend $=0.001)$ than in men $(\mathrm{RR}=0.94,95 \% \mathrm{CI}=0.75-1.2 ; P$ trend $=0.81)$; more apparent for melanoma occurring on body sites with higher continuous sun exposure (head, neck, and extremities) than for melanoma occurring on body sites with lower continuous sun exposure (trunk including shoulder, back, hip, abdomen, and chest). This pattern of association was similar to that for caffeinated coffee consumption, whereas no association was found for decaffeinated coffee consumption and melanoma risk.

Overall, no substantial difference of association emerged in the stratified analyses. A statistically significant inverse association was found in studies in women and with <15 years of follow-up, for which the number of studies was higher.

Sensitivity analyses:
In influence analysis, the association ranged from 0.95 ($95 \% \mathrm{CI}=0.92-0.98$) when the HPFS ($\mathrm{Wu}, 2015 \mathrm{c}$ HPFS, 17% weight) was omitted to 0.97 ($95 \% \mathrm{CI}=0.93-1.01$) when the NHS II (Wu, 2015c 13.6% weight) was omitted.

Nonlinear dose-response meta-analysis:
There was no evidence of non-linear association ($\mathrm{p}=0.54$).

Basal cell carcinoma

Coffee intake was statistically significantly inversely associated with BCC (RR: 0.96, 95\% $\mathrm{CI}=0.94-0.97$) with no evidence of heterogeneity.

Two studies were excluded from the dose-response meta-analysis. One study reported statistically non-significant positive association (RR: 1.64, 95\% CI= 0.77-3.46) (Milan, 2003), comparing >3 cups/day intake vs. rarely or never. The other study reported relative risk of 0.45 in men, comparing $\geq 7 \mathrm{vs} . \leq 2$ cups/day intake (no more data shown in the publication) (Jacobsen, 1986).

Squamous cell carcinoma

Coffee intake was not associated with SCC risk (RR: $0.98,95 \% \mathrm{CI}=0.94-1.02$) with no evidence of heterogeneity.

One study with only two levels of exposure reporting a relative risk of 0.35 in men for the ≥ 7 vs. ≤ 2 cups/day intake was excluded from the dose-response meta-analysis (Jacobsen, 1986).

Study quality:

All studies assessed coffee intake in cups/day apart from one which used times/day (Nilsson, 2010). The type of coffee was total coffee intake (Loftfield, 2015; Wu, 2015b, WHI-OS; Nilsson, 2010; Veierød, 1997) and caffeinated coffee (Wu, 2015c, NHS, NHS II, HPFS; Miura, 2014; Song, 2012).

The level of adjustment for skin type and sunlight exposure varied. One study adjusted for erythemal UV exposure (Loftfield, 2015), one study adjusted for skin type characteristics (Miura, 2014), five studies adjusted for sun exposure as well as skin type characteristics (Wu, 2015b, WHI-OS; Wu, 2015c NHS, NHS II, HPFS; Song, 2012). Two studies did not adjust for the aforementioned variables (Nilsson, 2010; Veierød, 1997). All studies adjusted for multiple confounders with the least adjusted study considering the confounding effect of age, sex and area of residence (Veierød, 1997).

Regarding study population, one Australian study originated from a skin cancer prevention trial of daily sunscreen use and beta-carotene supplementation (Miura, 2014). The Norwegian study included participants in a continuous screening program for cardiovascular diseases (Veierød, 1997).

No study reported important loses to follow-up. Skin cancer diagnoses were documented.

Table 6 Coffee and skin cancer risk. Summary of the linear dose-response meta-analysis in the 2005 SLR and 2016 CUP.

	2005 SLR	CUP	
Increment unit used	1 cup/day		
	Malignant melanoma		
Studies (n)	2	7	
Cases	91	6401	
RR (95\%CI)	$1.04(0.63-1.72)$	$0.96(0.92-1.00)$	
Heterogeneity (I ${ }^{2}$, p-value)	$86 \%,<0.01$	$50 \%, 0.06$	
P value Egger test	-	0.56	
	Basal cell carcinoma	Squamous cell carcinoma	
Studies (n)	3	3	
Cases	23109	2149	
RR (95\%CI)	0.96 (0.94-0.97)	$0.98(0.94-1.02)$	
Heterogeneity (I I^{2}, p-value)	$0 \%, 0.75$	$0 \%, 0.47$	
P value Egger test	-	-	
Malignant Melanoma: stratified and sensitivity analysis			
Sex	Men	Women	

Studies (n)	2	4
Cases	818	1830
RR (95\%CI)	1.03 (0.97-1.10)	0.91 (0.86-0.96)
Heterogeneity (I^{2}, p-value)	0\%, 0.45	36\%, 0.20
Geographic area	Europe	North America
Studies (n)	2	5
RR (95\%CI)	0.86 (0.54-1.36)	0.96 (0.92-1.00)
Heterogeneity (I^{2}, p-value)	59\%, 0.12	57\%, 0.05
Adjusted for age, sex and some indicator of skin colour and/or sun exposure	Adjusted	Not adjusted
Studies (n)	5	2
RR (95\%CI)	0.96 (0.92-1.00)	0.86 (0.54-1.36)
Heterogeneity (I^{2}, p-value)	57\%,0.05	59\%, 0.12
Duration of follow-up	<15 years	≥ 15 years
Studies (n)	3	4
RR (95\%CI)	0.96 (0.93-0.99)	0.96 (0.89-1.04)
Heterogeneity (I^{2}, p-value)	6\%,0.35	69\%, 0.02
Number of cases	<500 cases	≥ 500 cases
Studies (n)	3	4
RR (95\%CI)	0.97 (0.89-1.05)	0.96 (0.91-1.01)
Heterogeneity (I^{2}, p-value)	24\%,0.27	68\%, 0.03
Publication year	<2015	≥ 2015
Studies (n)	2	5
RR (95\%CI)	0.86 (0.54-1.36)	0.96 (0.92-1.00)
Heterogeneity ($\mathrm{I}^{2}, \mathrm{p}$-value)	59\%,0.15	57\%, 0.05

Table 7 Coffee intake and skin cancer risk. Results of meta-analyses including prospective studies published after the 2005 SLR.

Author, Year	Number of studies	Total number of cases	Studies country, area	Outcome	Comparison	RR (95\%CI)	Heterogeneity ($\mathbf{I}^{2}, \mathbf{p}$ value)
Meta-analyses							
Liu, 2016*	7 cohort studies	5737	USA, Sweden, Norway	Malignant melanoma	Caffeinated coffee per 1 cup/day	0.96 (0.91-1.00)	
					Highest vs. lowest	0.84 (0.71-0.99)	57.3\%
$\begin{aligned} & \text { Wang, } \\ & 2016^{*} \end{aligned}$	6 cohort and 1 case control study	6094	USA, Sweden, Italy	Cutaneous melanoma	Total coffee intake per 1 cup/day	0.97 (0.93-1.00)	
	7 cohort studies	5660	USA, Sweden, Norway		Highest vs. lowest	0.83 (0.72-0.97)	$50.7 \%, 0.048$
Caini, 2016	3 cohorts* ,1 hospitalbased case-control and 1 cross-sectional study	33352	Australia, USA,	NMSC	Caffeinated coffee, highest vs. lowest	0.82 (0.75-0.89)	48\%
	3 cohorts* and 1 hospital-based casecontrol study	23750		BCC		0.83 (0.76-0.91)	35%
	3 cohort studies	2120		SCC		0.93 (0.68-1.27)	50\%

[^0]Table 8 Coffee intake and skin cancer risk. Main characteristics of studies included in the linear dose-response meta-analysis.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
$\begin{gathered} \text { Loftfield, } 2015 \\ \text { SKI23424 } \\ \text { USA } \end{gathered}$	NIH-AARP, Prospective Cohort, Age: 50-71 years, M/W	$\begin{gathered} 2904 / \\ 447357 \\ 10.5 \text { years } \end{gathered}$	Cancer registry	$\begin{gathered} \text { Validated } \\ \text { FFQ, } \\ \text { total coffee } \end{gathered}$	Incidence, MM	≥ 4 vs. 0 cups/day	$\begin{gathered} 0.80(0.68-0.93) \\ \text { Ptrend:0.01 } \end{gathered}$	Age, sex, alcohol intake, BMI, cigar or pipe smoking, cigarette smoking, educational level, family history of cancer, July erythemal exposure, physical activity, smoking intensity	Mid-points of exposure categories
$\begin{gathered} \text { Wu, 2015b } \\ \text { SKI23426 } \\ \text { USA } \end{gathered}$	WHI-OS, Prospective Cohort, Age: 50-79 years, W, Postmenopausal	$\begin{gathered} 286 / \\ 66484 \\ 7.73 \text { years } \end{gathered}$	Questionnaire, medical records or pathology reports reviewed by physicians	Interview, total coffee	Incidence, MM	$\begin{gathered} \geq 4 \text { vs. } \leq 0.9 \\ \text { cups/day } \end{gathered}$	$\begin{gathered} 0.84(0.61-1.17) \\ \text { Ptrend:0.22 } \end{gathered}$	Age, alcohol intake, aspirin use, educational level, height, income, region of residence, skin reaction to sun, smoking, summer sunlight exposure in 30s, use of sunscreen, waist-tohip ratio, history of nonmelanoma skin cancer	Mid-points of exposure categories
$\begin{gathered} \text { Wu, 2015c } \\ \text { SKI23425 } \\ \text { USA } \end{gathered}$	NHS, Prospective Cohort, Age: 30-55 years, M/W	$\begin{gathered} 841 / \\ 74666 \\ 23.6 \text { years } \end{gathered}$	Biennial followup questionnaires and medical records	```Validated FFQ, caffeinated coffee```	Incidence, MM	>2 cups/day vs. never	$\begin{gathered} 0.81 \text { (0.65-1.00) } \\ \text { Ptrend:0.04 } \end{gathered}$	Age, family history of melanoma, personal history of non-skin cancer, natural hair colour, number of moles on legs or arms, sunburn reaction as a	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
	NHS II Prospective Cohort, Age: 25-42 years, M/W	$\begin{gathered} 642 / \\ 89220 \\ 17.3 \text { years } \end{gathered}$	Biennial followup questionnaires and medical records	```Validated FFQ, caffeinated coffee```	Incidence, MM	>2 cups/day vs. never	0.70 (0.55-0.89) Ptrend:0.008	child/adolescent, number of blistering, time spent in direct sunlight since high school, cumulative ultraviolet flux since baseline, BMI, smoking status, physical activity, total energy intake, and alcohol intake, caffeinated tea/carbonated beverages/ caffeine-containing chocolate, decaffeinated coffee/tea/carbonated beverages. Analyses on women further adjusted for rotating night shifts, menopausal status, postmenopausal hormone use	
	HPFS, Prospective Cohort, Age: 40-75 years, M/W	$\begin{gathered} 771 / \\ 39424 \\ 16.8 \text { years } \end{gathered}$	Biennial followup questionnaires and medical records	```Validated FFQ, caffeinated coffee```	Incidence, MM	>2 cups/day vs. never	$\begin{gathered} 1.10 \text { (0.86-1.30) } \\ \text { Ptrend:0.55 } \end{gathered}$		
Miura, 2014 SKI23423 Australia	NSCS, Prospective Cohort, Age: 49.3 years, M/W	$\begin{gathered} 323 / \\ 1325 \\ 11 \text { years } \end{gathered}$	Biennial follow- up questionnaires, histological reports	```Validated FFQ, caffeinated coffee```	Incidence, BCC	≥ 2 vs. 0 cup/day	$\begin{gathered} 0.92 \text { (0.67-1.28) } \\ \text { Ptrend:0.34 } \end{gathered}$	Age, sex, tanning ability, treatment allocation, elastosis of neck, freckling back, history of skin cancer	Mid-points of exposure categories, number of cases per category
		196/			Incidence, SCC		$\begin{gathered} 1.17 \text { (0.71-1.91) } \\ \text { Ptrend:0.31 } \end{gathered}$	Additionally adjusted for pack years of smoking	
Song, 2012 SKI23421	NHS, Prospective	$\begin{aligned} & 14230 / \\ & 72921 \end{aligned}$	Biennial followup	Validated FFQ,	Incidence, BCC	$\begin{gathered} >3 \text { cups/day } \\ \text { vs. }<1 \end{gathered}$	$\begin{aligned} & 0.79(0.74-0.85) \\ & \text { Ptrend:<0.0001 } \end{aligned}$	Age, BMI, childhood sun reaction, family history of	Mid-points of exposure

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
USA	Cohort, Age: 30-55 years, W	24 years	questionnaires pathologically unconfirmed	caffeinated coffee		cup/month		melanoma, hair colour, history of severe sunburn, physical activity, presence of moles, smoking status, UV index at birth, age 15, age 30 , history of non-skin cancer, sun exposures at different age intervals	categories,
	HPFS, Prospective Cohort, Age: 40-75 years, M	$8556 /$ 39976 22 years					$\begin{gathered} 0.90(0.80-1.01) \\ \text { Ptrend:0.003 } \end{gathered}$		
	NHS, Prospective Cohort, Age: 30-55 years, W	$\begin{gathered} 1043 / \\ 72921 \\ 24 \text { years } \end{gathered}$	Biennial follow- up questionnaires and medical records		Incidence, SCC		$\begin{gathered} 1.03(0.80-1.32) \\ \text { Ptrend:0.81 } \end{gathered}$		
	HPFS, Prospective Cohort, Age: 40-75 years, M						$\begin{gathered} 0.66 \text { (0.44-1.01) } \\ \text { Ptrend:0.11 } \end{gathered}$		
	NHS, Prospective Cohort, Age: 30-55 years,	$\begin{gathered} 403 / \\ 72921 \\ 24 \text { years } \end{gathered}$			Incidence, MM		$\begin{gathered} 1.10(0.78-1.56) \\ \text { Ptrend:0.48 } \end{gathered}$		Superseded by Wu, 2015c

Table 9 Coffee intake and skin cancer risk. Main characteristics of studies excluded from the linear dose-response meta-analysis.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Reasons for exclusion
$\begin{gathered} \text { Milan, } 2003 \\ \text { SKI00640 } \\ \text { Finland } \end{gathered}$	Finnish Adult Twin Cohort Study, Case Cohort, M/W	$\begin{gathered} 184 / \\ 13888 \\ 15.2 \text { years } \end{gathered}$	Population registry	Questionnaire, total coffee	Incidence, BCC, Men Women	>3 cups/day vs. rarely or never	1.75 (0.73-4.17) $1.64(0.77-3.46)$	Age, ethnicity, sunlight (shared environment in twin pairs)	Excluded, two levels of exposure, used in the highest vs. lowest figure
$\begin{gathered} \text { Stensvold, } 1994 \\ \text { SKI02913 } \\ \text { Norway } \end{gathered}$	Norway 1977- 1982, Prospective Cohort, Age: 35-54 years, M/W	$36 /$ 42973 10.1 years $48 /$	Health screening programme	$\begin{gathered} \text { FFQ, } \\ \text { total coffee } \end{gathered}$	Incidence, MM, men Women	per 1 cup/day	$0.02(-0.25-0.30)$ $-0.37(-0.64--0.11)$	Age, cigarettes per day, country of residence	Superseded by Veierod, 1997
$\begin{gathered} \text { Jacobsen, } 1986 \\ \text { SKI04329 } \\ \text { Norway } \end{gathered}$	Norway 19671969, Prospective Cohort, Age: 59 years, M/W	$\begin{gathered} 19 / \\ 16555 \\ 11.5 \text { years } \end{gathered}$	Probability sample, brothers, spouses, siblings	$\begin{gathered} \text { FFQ, } \\ \text { total coffee } \end{gathered}$	Incidence, MM	$\begin{gathered} \geq 7 \text { vs. } \leq 2 \\ \text { cups/day } \end{gathered}$	2.63	Age, sex, area of residence	Excluded, only
		207/			NMSC		0.56		two levels of
		118/			BCC, men		0.45	Age, sex, area of residence, smoking habits	in the highest vs. lowest analysis
		23/			SCC, men		0.35		
		12/			MM, men		3.47		
Whittemore,	HPALS,	104/	Alumni offices,	Not stated,	Incidence,	-	-	-	No risk estimate

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	RR (95\% CI) Ptrend	Adjustment factors
Reasons for exclusion								
SKI2209 USA	Case Cohort, M/W, College alumni	51977	questionnaires	total coffee	MM			

Figure 3 RR estimates of skin cancer by levels of coffee intake

Figure 4 RR $\mathbf{(9 5 \%} \mathbf{C I})$ of melanoma for the highest compared with the lowest level of coffee intake, by cancer type

Figure 5 Relative risk of melanoma for 1 cup/day increase of coffee intake, by cancer type

Figure 6 Funnel plot of studies included in the dose response meta-analysis of coffee and melanoma

Figure 7 Relative risk of melanoma for 1 cup/day increase of coffee intake, by sex

Figure 8 Relative risk of melanoma for 1 cup/day increase of coffee intake, by geographic location

3.6.1 Decaffeinated coffee

Overall summary
No studies were identified in the 2005 SLR and six studies (five publications on melanoma, BCC and SCC) were identified in the CUP.

Dose-response meta-analyses were conducted for Melanoma, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC).

Table 10 Decaffeinated coffee intake and skin cancer risk. Number of studies in the CUP SLR.

	Number
Studies identified	6 (5 publications)
Studies included in forest plot of highest compared with lowest exposure	5 (3 publications) melanoma risk
	NMSC risk - no studies
	3 (2 publications) BCC
	3 (2 publications) SCC risk
Studies included in linear dose-response meta- analysis	5 (3 publications) melanoma risk
	NMSC risk - no studies
	3 (2 publications) BCC
	$3(2$ publications) SCC risk
Studies included in non-linear dose-response meta-analysis	5 (3 publications) melanoma risk
	NMSC, BCC, SCC - not enough studies

Skin cancer

Summary
Main results:
All identified studies were included in the dose response meta-analysis on melanoma, SCC and BCC.

Malignant melanoma

Decaffeinated coffee intake was not associated with melanoma risk (RR for 1 cup increase: $0.99,95 \% \mathrm{CI}=0.95-1.02$). No heterogeneity was observed.

Sensitivity analyses:
In influence analysis, the association ranged from 0.98 ($95 \% \mathrm{CI}=0.95-1.02$) when $\mathrm{Wu}, 2015 \mathrm{c}$
(NHS II, 10.7% weight) was omitted to 0.99 ($95 \% \mathrm{CI}=0.93-1.04$) when Loftfield, 2015 (39.7% weight) was omitted.

Nonlinear dose-response meta-analysis:

There was no evidence of non-linear relationship between decaffeinated coffee intake and risk of melanoma ($\mathrm{p}=0.58$).

Basal cell carcinoma

Decaffeinated coffee intake was not associated with BCC risk (RR: $1.02,95 \% \mathrm{CI}=1.00-1.04$) with no heterogeneity.

Squamous cell carcinoma

Decaffeinated coffee intake was not associated with SCC risk (RR: 1.05, 95\% CI=0.981.12). Low heterogeneity was observed.

Study quality:
See section 3.6.1 on total coffee intake.
Table 11 Decaffeinated coffee and skin cancer risk. Summary of the linear doseresponse meta-analysis in the 2005 SLR and 2016 CUP.

	2005 SLR*	CUP
Increment unit used	1 cup/day	
Malignant melanoma		
Studies (n)	-	5
Cases	-	30628
RR (95\%CI)	-	0.99 (0.95-1.02)
Heterogeneity (I^{2}, p-value)	-	0\%, 0.98
P value Egger test	-	0.92
	Basal cell carcinoma	Squamous cell carcinoma
Studies (n)	3	3
Cases	23109	2149
RR (95\%CI)	1.02 (1.00-1.04)	1.05 (0.98-1.12)
Heterogeneity (I^{2}, p-value)	0\%, 0.83	19\%, 0.29
P value Egger test	-	-
Malignant Melanoma: stratified and sensitivity analysis		
Sex	Men	Women
Studies (n)	1	3
Cases	771	1695
RR (95\%CI)	0.99 (0.90-1.09)	0.98 (0.92-1.05)
Heterogeneity (I^{2}, p-value)	-	0\%, 0.80

P value Egger test	-	-
Geographic area	Europe	North America
Studies (n)	-	5
RR (95\%CI)	-	$0.99(0.95-1.02)$
Heterogeneity (I^{2}, p-value)	-	$0 \%, 0.98$
P value Egger test	-	0.92
Adjusted for age, sex and some indicator of skin colour and/or sun exposure	Adjusted	Not adjusted
Studies (n)		
RR (95\%CI)	$0.99(0.95-1.02)$	-
Heterogeneity ($\mathrm{I}^{2}, \mathrm{p}$-value)	$0 \%, 0.98$	-

*No studies were identified in the 2005 SLR.

Table 12 Decaffeinated coffee and skin cancer risk. Results of meta-analyses of prospective studies published after the 2005 SLR.

Author, Year	Number of studies	Total number of cases	Studies country, area	Outcome	Comparison	RR (95\% CI)	Heterogeneity ($\mathbf{I}^{2}, \mathbf{p}$ value)
Meta-analyses							
Liu, 2016*	5 cohort studies	-	USA	Malignant melanoma	Highest vs. lowest	0.94 (0.74-1.18)	0\%
Wang, 2016*	5 cohort and 1 case control study	4183	USA, Italy	Cutaneous melanoma	Highest vs. lowest	0.92 (0.81-1.05)	0\%, 0.97
Caini, 2016*	3 cohort and 1 casecontrol study	-	Australia, USA	NMSC	Higest vs. lowest	1.01 (0.85-1.21)	0\%

*All studies are included in the CUP dose-response meta-analysis.

Table 13 Decaffeinated coffee intake and skin cancer risk. Main characteristics of studies included in the linear dose-response metaanalysis.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
Loftfield, 2015 SKI23424 USA	NIH-AARP, Prospective Cohort, Age: 50-71 years, M/W	$\begin{gathered} 2904 / \\ 447357 \\ 10.5 \text { years } \end{gathered}$	Cancer registry	Validated FFQ	Incidence, MM	≥ 4 vs. 0 cups/day	$\begin{gathered} 0.95(0.76-1.18) \\ \text { Ptrend:0.55 } \end{gathered}$	Age, sex, alcohol intake, BMI, cigar or pipe smoking, cigarette smoking, educational level, family history of cancer, July erythemal UV exposure, physical activity, smoking intensity	Mid-points of exposure categories
$\begin{gathered} \text { Wu, 2015b } \\ \text { SKI23426 } \\ \text { USA } \end{gathered}$	WHI-OS, Prospective Cohort, Age: 50-79 years, W, Postmenopausal	$\begin{gathered} 314 / \\ 66484 \\ 7.73 \text { years } \end{gathered}$	Questionnaire, medical records or pathology reports reviewed by physicians	Interview	Incidence, MM	$\begin{gathered} \geq 4 \text { vs. } \leq 0.9 \\ \text { cups/day } \end{gathered}$	$\begin{gathered} 0.73 \text { (0.36-1.49) } \\ \text { Ptrend:0.44 } \end{gathered}$	Age, alcohol intake, aspirin use, educational level, height, income, region of residence, skin reaction to sun, smoking, summer sunlight exposure in 30 s , use of sunscreen, waist-tohip ratio, history of nonmelanoma skin cancer, history of non-melanoma skin cancer	Mid-points of exposure categories
Wu, 2015c SKI23425 USA	NHS, Prospective Cohort, Age: 25-75 years, M/W	$\begin{gathered} 739 / \\ 74666 \\ 23.6 \text { years } \end{gathered}$	Biennial follow-up questionnaires and medical records	Validated FFQ	Incidence, MM,	>2 cups/day vs. never	$\begin{gathered} 0.98(0.72-1.30) \\ \text { Ptrend:0.76 } \end{gathered}$	Age, family history of melanoma, personal history of non-skin cancer, natural hair colour, number of moles on legs or arms,	Mid-points of exposure categories

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
	NHS II, Prospective Cohort, Age: 25-75 years, M/W	$\begin{gathered} 642 / \\ 89220 \\ 17.3 \text { years } \end{gathered}$			Incidence, MM,	$\begin{gathered} >2 \text { cups/day vs. } \\ \text { never } \end{gathered}$	$\begin{gathered} 0.93(0.60-1.40) \\ \text { Ptrend:0.91 } \end{gathered}$	sunburn reaction as a child/adolescent, number of blistering, time spent in direct sunlight since high school, cumulative	
	HPFS, Prospective Cohort, Age: 40-75 years, M/W	$\begin{gathered} 771 / \\ 39424 \\ 16.8 \text { years } \end{gathered}$			Incidence, MM,	$\begin{gathered} >2 \text { cups/day vs. } \\ \text { never } \end{gathered}$	$\begin{gathered} 0.92 \text { (0.68-1.2) } \\ \text { Ptrend:0.98 } \end{gathered}$	baseline, BMI, smoking status, physical activity, total energy intake, and alcohol intake, caffeinated tea/carbonated beverages/ caffeine-containing chocolate, decaffeinated coffee/tea/carbonated beverages. Analyses on women further adjusted for rotating night shifts, menopausal status, postmenopausal hormone use	
Miura, 2014 SKI23423 Australia	NSCS, Prospective Cohort,		Biennial follow-up questionnaires, histological reports	Validated FFQ	Incidence, BCC	$\begin{aligned} & \geq 1 \text { cup/day vs. } \\ & \text { none } \end{aligned}$	$\begin{gathered} 1.05(0.73-1.52) \\ \text { Ptrend:0.78 } \end{gathered}$	Age, sex, tanning ability, treatment allocation, elastosis of neck, freckling back, history of skin cancer	Mid-points of exposure categories, number of cases per category
	Age: 49.3 years, M/W	$\begin{gathered} 196 / \\ 1325 \\ 11 \text { years } \end{gathered}$			Incidence, SCC		$\begin{gathered} 1.15(0.69-1.92) \\ \text { Ptrend:0.60 } \end{gathered}$	Additionally adjusted for pack years of smoking	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
$\begin{gathered} \text { Song, } 2012 \\ \text { SKI23421 } \\ \text { USA } \end{gathered}$	NHS, Prospective Cohort, Age: 30-55 years, W	14230 72921 24 years	Biennial follow-up questionnaires and medical records	Validated FFQ	Incidence, BCC	>3 cups/day vs. <1 cup/month	$\begin{gathered} 0.98 \text { (0.87-1.10) } \\ \text { Ptrend:0.01 } \end{gathered}$	Age, BMI, family history of melanoma, hair colour, history of severe sunburn, physical activity, presence of moles, smoking status, UV index at birth, age 15, age 30 , childhood reaction to sun, history of non-skin cancer, sun exposures at different age intervals	Mid-points of exposure categories
	HPFS, Prospective Cohort, Age: 40-75 years, M	8 556/ 39976 22 years					$\begin{gathered} 1.00(0.87-1.15) \\ \text { Ptrend:0.81 } \end{gathered}$		
	NHS, Prospective Cohort, Age: 30-55 years, W	$1043 /$ 72921 24 years			Incidence,SCC		$\begin{gathered} 0.89(0.55-1.43) \\ \text { Ptrend:0.63 } \end{gathered}$		
	HPFS, Prospective Cohort, Age: 40-75 years, M						$\begin{gathered} 1.44 \text { (0.99-2.10) } \\ \text { Ptrend:0.03 } \end{gathered}$		
	NHS, Prospective Cohort, Age: 30-55 years, W	$\begin{gathered} 403 / \\ 72921 \\ 24 \text { years } \end{gathered}$			Incidence, MM		$\begin{gathered} 0.79(0.40-1.56) \\ \text { Ptrend:0.40 } \end{gathered}$		Superseded by Wu, 2015 (NHS, HPFS)
	HPFS,	338/					0.84 (0.39-1.82)		

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
	Prospective Cohort, Age: 40-75 years, M	$\begin{gathered} 39976 \\ 22 \text { years } \end{gathered}$					Ptrend:0.64		

Figure 9 RR estimates of melanoma by levels of decaffeinated coffee intake

Figure 10 RR (95% CI) of melanoma for the highest compared with the lowest level of decaffeinated coffee intake
Author
Year Sex

Figure 11 Relative risk of melanoma for 1 cup/day increase of decaffeinated coffee intake

Figure 12 Funnel plot of studies included in the dose response meta-analysis of decaffeinated coffee and melanoma

Figure 13 Relative risk of melanoma for 1 cup/day increase of decaffeinated coffee intake, by sex

3.7.1 Total alcoholic drinks

Overall summary
Seventeen studies on total alcohol intake were identified from which eight publications were identified during the CUP.

Dose-response meta-analyses were conducted on total alcohol intake and melanoma, basal cell carcinoma (BCC) and squamous cell carcinoma (SCC). Not enough studies were identified to conduct dose response meta-analysis for non-melanoma skin cancer (NMSC).

Table 14 Total alcohol intake and skin cancer risk. Number of studies in the CUP SLR.

	Number
Studies identified	17 (17 publications)
Studies included in forest plot of highest compared with lowest exposure	6 (6 publications) melanoma risk
	Not enough studies for NMSC risk
	7 (5 publications) BCC
	3 (3 publications) SCC risk
Studies included in linear dose-response meta- analysis	6 (6 publications) melanoma risk
	Not enough studies for NMSC risk
	9 (7 publications) BCC
	3 (3 publications) SCC risk
Studies included in non-linear dose-response meta- analysis	6 (6 publications) melanoma risk
	Not enough studies for NMSC risk
	6 (4 publications) BCC
	Not enough studies for SCC risk

Skin cancer

Summary
Main results:
Six out of seven studies on melanoma, the nine studies (8 publications) on BCC and the three studies on SCC could be included in the dose-response meta-analysis. Not enough studies were identified for NMSC (1 study from 1 publication).

Malignant melanoma

Total alcohol intake (as ethanol) was statistically significanlty positively associated with melanoma risk (RR: $1.08,95 \% \mathrm{CI}=1.03-1.13$). High proportion of within study heterogeneity was observed ($\mathrm{I}^{2}: 66.2 \%, \mathrm{p}=0.01$). The insufficient number of studies did not allow analysis of heterogeneity source.

One population study reporting standardised incidence ratio was excluded from the metaanalysis; the study reported no association between alcoholism and melanoma (Adami, 1992).

Egger's test was statistically non-significant ($\mathrm{p}_{\text {tese }}=0.142$), probably because of low number of studies. However, the assymetry of the funnel plot suggest that small studies in the left side of the funnel may be missing.

Nonlinear dose-response meta-analysis:
There was statistically significant evidence of nonlinearity ($\mathrm{p}<0.0001$) in the range of nondrinkers and very low consumers. However, the dose-response was mainly flat above 10 g/day.

Non-melanoma skin cancer

Only one study was identified in CUP (Kubo, 2014). The RR of NMSC was 1.23 (95\% CI 1.11-1.36), when comparing alcohol consumption ≥ 7 drinks per week with non-drinking and 1.08 (95% CI 1.05-1.11) for seven additional servings per week.

Sensitivity analysis:
The association remained statistically significant when each study was excluded in turn in influence analysis.

Basal cell carcinoma

Total alcohol intake (as ethanol) was not associated with BCC risk (RRfor $10 \mathrm{~g} / \mathrm{day}$ increment: $1.04,95 \% \mathrm{CI}=0.99-1.10$). High and statistically significant heterogeneity was observed ($\mathrm{I}: 68.3 \%$, p-value $=0.004$).

Egger's test showed no evidence of publication or small study bias.
Stratified analyses by sex showed no association in men (RR: $1.03,95 \% \mathrm{CI}=0.99-1.08 ; \mathrm{I}$: 71.1, p-value heterogeneity test $=0.016$), whereas a statistically significant positive association was found for women (RR: $1.08,95 \% \mathrm{CI}=1.04-1.12 ; \mathrm{I}: 43.2, \mathrm{p}=0.152$).

Sensitivity analysis:
The association became marginally significant (positive) when Milan 2003 (RR: 1.05, 95\% CI=1.00-1.10) was excluded. Milan 2003 reported results on same-sex twins, and assumed that they had similar sun exposure in childhood.

Nonlinear dose-response meta-analysis:
There was statistical significant evidence of nonlinearity ($\mathrm{p}<0.0001$) in the range of nondrinkers and very low consumers. However, the dose-response plateaued above $10 \mathrm{~g} / \mathrm{day}$.

Squamous cell carcinoma

Total alcohol intake (as ethanol) was not associated with risk of SCC (RR: 1.03, 95\% $\mathrm{CI}=0.97-1.09$). No heterogeneity was observed ($\mathrm{I}: 0 \%, \mathrm{p}=0.578$).

Egger's test was not conducted due to low number of publications.
Sensitivity analysis:
The results did not change substantially (no association) when studies were excluded in turn in influence analysis.

Study quality:
All studies used FFQ or questionnaires to assess alcohol consumption, except one study which used 7-day food diary (EPIC-Norfolk; Davies, 2002).

Two studies adjusted for different measures of skin sensitivity to sunlight and sunlight exposure (Wu, 2015d; Kubo, 2014). One study adjusted for skin sensitivity to sunlight and various measures of personal characteristics (such as degree of freckling, number of nevi) (Jensen, 2012) and one study for hair colour (Davies, 2002). Three studies adjusted for several personal characteristics (skin colour, elastosis or hair colour) and sunlight exposure (Ansems, 2008; Freedman, 2003a; Freedman, 2003b). One study in twin pairs assumed that most twins were exposed to a similar environment until the age of 16 (Milan, 2003). Three studies were minimally adjusted for age and sex (Loftfield, 2015; Asgari, 2012) or age only (Foote, 2001).

Regarding study population, two studies were prospective follow-up of participants in a randomised controlled trial, the Nambour Skin Cancer Prevention Trial on beta-carotene supplements and sunscreen creams (Ansems, 2008) and in a trial on oral vitamin A in "moderately sun-damaged" subjects with ten or more actinic keratoses (Foote, 2001). In the follow-up of the Nambour Skin Cancer Prevention Trial, risk estimates remained statistically non-significant when participants with history of skin cancer were excluded for BCC and SCC. One study on melanoma (Freedman, 2003a) included incident and mortality cases. Two studies on BCC (Ansems, 2008, Nambour Skin Cancer Study; Davies, 2002, EPIC-Norfolk) and one study on SCC (Ansems, 2008) included incident and prevalent cases.

In one study that reported data on tumour-based BCC and SCC analyses (Ansems, 2008), results were similar when analyses were person-based rather than tumour-based.

All the studies included in the dose-response analysis had "nondrinkers" as reference category. Non-drinkers were defined in different ways. In three studies on melanoma there is no description of nondrinkers (Loftfield, 2015; Asgari, 2012; Freedman, 2003a). In one study the reference category was "lifelong abstainers" - subjects who had no alcohol consumption during the previous year- and "never or almost never" before the past year (Klatsky, 2015). Kubo et al. defined the reference category as "less than 100 alcoholic drinks in their lifetime" (Kubo, 2014) while in Allen et al. "nondrinkers" included non-drinkers and former drinkers (Allen, 2009). Four studies on BCC and SCC did not describe the "nondrinkers" definition of the reference category (Wu, 2015d; Ansems, 2008; Freedman, 2003b; Fung, 2002a; Foote, 2001). One study defined never drinkers as "never" and "past" drinkers (Jensen, 2012).

Table 15 Total alcohol intake and skin cancer risk. Summary of the linear doseresponse meta-analysis in the 2005 SLR and 2016 CUP.

	2005 SLR	CUP
Increment unit used	Servings/day	10g/day
Malignant melanoma		
Studies (n)	2	6
Cases	731	7367
RR (95\%CI)	1.18 (0.99-1.40)	1.08 (1.03-1.13)
Heterogeneity ($\mathrm{I}^{2}, \mathrm{p}$-value)	0\%, 0.951	66\%,0.01
P value Egger test	-	0.08
Basal cell carcinoma		
Studies (n)	2	9
Cases	1495	3349
RR (95\%CI)	1.24 (0.65-2.34)	1.04 (0.99-1.10)
Heterogeneity (I^{2}, p -value)	61\%, 0.109	68.3\%, 0.004
P value Egger test	-	0.799
Squamous cell carcinoma		
Studies (n)	1	3
Cases	106	425
RR (95\%CI)	1.69 (0.65-4.38)	1.03 (0.97-1.09)
Heterogeneity (I^{2}, p-value)	-	0\%, 0.578
P value Egger test	-	-
Stratified and sensitivity analysis		
Malignant Melanoma		
Sex	Men	Women
Studies (n)	1	3
Cases	48	2690
RR (95\%CI)	1.17 (0.82-1.67)	1.09 (1.03-1.16)
Heterogeneity (I^{2}, p-value)	-	34\%, 0.22
BCC		
Sex	Men	

Studies (n)	4	4	
Cases	10884	22073	
RR (95\%CI)	1.03 (0.99-1.08)	1.08 (1.04-1.12)	
Heterogeneity (I^{2}, pvalue)	71.1\%,0.016	$43.2 \%, 0.152$	
Geographic area	Australia	Europe	North America
Studies (n)	1	3	5
RR (95\%CI)	0.94 (0.81-1.09)	1.01 (0.96-1.06)	1.10 (1.02-1.17)
Heterogeneity (I^{2}, pvalue)	-	$13.4 \%, 0.315$	54.5\%, 0.111
Exposure assessment	FFQ	Questionnaire	
Studies (n)	6	2	
RR (95\%CI)	1.03 (0.98-1.07)	1.02 (0.78-1.32)	
Heterogeneity (I^{2}, p value)	59.6\%, 0.060	82.6\%, 0.016	-
Number of cases	<500 cases	500-<1000 cases	>1000 cases
Studies (n)	4		5
RR (95\%CI)	0.98 (0.88-1.09)		1.06 (1.00-1.12)
Heterogeneity ($\mathrm{I}^{2}, \mathrm{p}-$ value)	16.5\%, 0.309		85.6\%, 0.001
Publication year	≤ 2010	>2010	
Studies (n)	5	4	
RR (95\%CI)	1.03 (0.91-1.16)	1.03 (0.99-1.08)	
Heterogeneity (I^{2}, p value)	61.9\%, 0.033	81.2\%, 0.021	
Adjusted for age, sex and some indicator of skin colour and/or sun exposure	Adjusted	Not adjusted	
Studies (n)	7	2	
RR (95\%CI)	1.04 (0.98-1.10)	1.08 (0.93-1.25)	
Heterogeneity (I^{2}, $\mathrm{p}-$ value)	77.8\%, 0.001	0.0\%, 0.432	

Table 16 Total alcohol intake and malignant melanoma risk. Results of meta-analyses of prospective studies published after the 2005
SLR.

					Men (3 studies) Women (3 studies)	$\left\lvert\, \begin{aligned} & 1.32 \text { (0.90-1.92) } \\ & 1.27 \text { (1.14-1.43) }\end{aligned}\right.$	0\%
Rota, 2014	2 cohort studies, 14 case-control studies	6251 cases (men and women combined)	Europe, North America, Australia and Paraguay	Malignant melanoma	Any alcohol drinking vs. no/occasional drinking All studies	1.20 (1.06-1.37)	$55.6 \%, 0.003$
					Case-control studies (14 studies)	1.20 (1.01-1.44)	$57.5 \%, 0.003$
					Cohort studies (2 studies)	1.26 (1.19-1.35)	0.0\%, 0.657
					Men (3 studies) Women (3 studies)	$\begin{aligned} & 1.47 \text { (0.94-2.29) } \\ & 1.26(1.19-1.35) \end{aligned}$	$\begin{aligned} & 45.7 \%, 0.159 \\ & 0 \%, 0.665 \end{aligned}$
					Light alcohol drinking vs. no/occasional drinking ($\leq 1 \mathrm{drink} / \mathrm{d}$) All studies	1.10 (0.96-1.26)	41.8\%, 0.045
					Case-control studies (12 studies)	1.06 (0.90-1.25)	$31.7 \%, 0.129$
					Cohort studies (2 studies)	1.25 (1.15-1.35)	0.0\%, 0.847
					Moderate to heavy alcohol drinking vs. no/occasional drinking (>1drink/d) All studies	1.18 (1.01-1.40)	$51.0 \%, 0.021$
					Case-control studies (10 studies)	1.13 (0.90-1.41)	$53.2 \%, 0.023$
					Cohort studies (2 studies)	1.29 (1.17-1.43)	0.0\%, 0.370

Table 17 Total alcohol intake and skin cancer risk. Main characteristics of studies included in the linear dose-response meta-analysis.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
Klatsky, 2015SKI23406USA	KРМСР, Prospective Cohort, Age: 41 years, M/W	$\begin{gathered} 1164 / \\ 124193 \\ 17.8 \text { years } \end{gathered}$	Cancer registry	Questionnaire	Incidence MM	≥ 3 drinks/day vs. Never drinkers	2.20 (1.60-3.10)	Age, sex, BMI, educational level, marital status, race/ethnicity, smoking
					Never smokers		1.80 (1.20-2.80)	Paper does not specify
$\begin{gathered} \text { Loftfield, } 2015 \\ \text { SKI23424 } \\ \text { USA } \end{gathered}$	NIH-AARP, Prospective Cohort, Age: 50-71 years, M/W	$\begin{gathered} 2904 / \\ 447357 \\ 10.5 \text { years } \end{gathered}$	Cancer registry	Validated FFQ	Incidence MM	>3 drinks/day vs. none for >5 years	1.11 (0.95-1.29)	Age, sex
$\begin{gathered} \mathrm{Wu}, 2015 \mathrm{~d} \\ \text { SKI23407 } \\ \text { USA } \end{gathered}$	NHS, NHS II, HPFS, Prospective Cohort, M/W	$\begin{gathered} 28951 / \\ 211462 \\ 3740000 \\ \text { person-years } \end{gathered}$	Self-report	FFQ	Incidence BCC	per $10 \mathrm{~g} /$ day	1.06 (1.03-1.10)	Age, BMI, caffeine consumption, cumulative UV flux since baseline, ethnicity, family history of melanoma, hair colour, number of moles on arms or legs, number of severe sunburns, physical activity, skin reaction to sun as a child/adolescent, smoking status, use
		28 951/				$\begin{gathered} \geq 30 \mathrm{~g} / \text { day vs. } \\ \text { None } \end{gathered}$	$\begin{aligned} & 1.22(1.15-1.30) \\ & \text { Ptrend: }<0.0001 \end{aligned}$	
		19 679/			Incidence BCC Women	$\begin{gathered} \geq 30 \mathrm{~g} / \text { day vs. } \\ \text { None } \end{gathered}$	$\begin{aligned} & 1.27(1.16-1.38) \\ & \text { Ptrend:<0.0001 } \end{aligned}$	
		$9272 /$			Incidence BCC Men	$\begin{aligned} & \geq 30 \mathrm{~g} / \text { day vs. } \\ & \text { None } \end{aligned}$	$\begin{aligned} & 1.18(1.08-1.28) \\ & \text { Ptrend:<0.0001 } \end{aligned}$	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
								of sunscreen in summer months, average time spent in direct sunlight in summer months
$\begin{gathered} \text { Kubo, } 2014 \\ \text { SKI23408 } \\ \text { USA } \end{gathered}$	WHI-OS, Prospective Cohort, Age: 50-79 years, W, Postmenopausal	$\begin{gathered} 9593 / \\ 59575 \\ 10.2 \text { years } \end{gathered}$	Medical records by physicians	FFQ	Incidence NMSC	≥ 7 drinks/week vs. Nondrinkers	$\begin{aligned} & 1.23(1.11-1.36) \\ & \text { Ptrend:<0.0001 } \end{aligned}$	Age, BMI, education years, having a healthcare provider, health insurance, history of melanoma, history of NMSC, Langleys of exposure, physical activity, skin reaction to sun, smoking, childhood sun exposure, current summer sun exposure, use of sunscreen, last medical visit within 1 year
		9 593/				Per 7 drinks/ week	1.08 (1.05-1.11)	
		9 593/				Current drinker vs. Nondrinkers	1.12 (1.00-1.24)	
		532/			Incidence MM	≥ 7 drinks/week vs. Nondrinker	$\begin{gathered} 1.64(1.09-2.49) \\ \text { Ptrend:0.0013 } \end{gathered}$	
		532/				Per 7 drinks/ week	1.16 (1.06-1.27)	
		532/				Current drinker vs. Nondrinkers	1.18 (0.76-1.82)	
$\begin{gathered} \text { Asgari, } 2012 \\ \text { SKI23409 } \\ \text { USA } \end{gathered}$	VITAL, Prospective Cohort, Age: 50-76 years,	$\begin{gathered} 566 / \\ 69635 \\ 5.84 \text { years } \end{gathered}$	Cancer registry	FFQ	Incidence MM	$\geq 2 \text { vs. } \leq 0$ drinks/day	$\begin{gathered} 1.28(0.97-1.70) \\ \text { Ptrend:0.05 } \end{gathered}$	Age, sex

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	M/W							
Jensen, 2012 SKI23410 Denmark	DCH, Prospective Cohort, Age: 50-64 years, M/W	$\begin{gathered} 2384 / \\ 54766 \\ 11.4 \text { years } \\ \hline 2384 / \end{gathered}$	Cancer and pathology registries	FFQ + questionnaire	Incidence BCC	$\begin{gathered} \text { per } 10 \mathrm{~g} / \mathrm{d} \\ \hline \geq 50.1 \mathrm{vs} .0 .1- \\ 10 \mathrm{~g} / \mathrm{d} \end{gathered}$	1.01 (0.99-1.04) 1.03 (0.88-1.21)	Age, sex, BMI, education years, degree of freckling, number of nevi, sun sensitivity
		$1207 /$				per $10 \mathrm{~g} / \mathrm{d}$	1.05 (1.01-1.09)	Age, BMI, education years, degree of freckling, number of nevi, sun sensitivity, menopausal status, use of hormone replacement therapy at baseline
		1 207/			Incidence BCC Women	$\begin{aligned} & \geq 50.1 \mathrm{vs} \text {. } 0.1- \\ & 10 \mathrm{~g} / \mathrm{d} \end{aligned}$	1.22 (0.89-1.68)	
		$1177 /$			Incidence BCC Men	per $10 \mathrm{~g} / \mathrm{d}$	1.01 (0.99-1.04)	Age, BMI, education years, degree of freckling, number of nevi, sun sensitivity
		1 177/				$\begin{aligned} & \geq 50.1 \mathrm{vs} \text {. } 0.1- \\ & 10 \mathrm{~g} / \mathrm{d} \end{aligned}$	1.09 (0.89-1.34)	
		192/			Incidence SCC	per $10 \mathrm{~g} / \mathrm{d}$	1.03 (0.97-1.10)	Age, sex, BMI, education years, degree of freckling, number of nevi, sun sensitivity
		192/				$\begin{gathered} \geq 50.1 \mathrm{vs} .0 .1- \\ 10 \mathrm{~g} / \mathrm{d} \end{gathered}$	1.25 (0.72-2.14)	
		116/			Incidence SCC Men	per $10 \mathrm{~g} / \mathrm{d}$	1.03 (0.96-1.11)	Age, BMI, education years, degree of freckling, number of nevi, sun sensitivity
		116/				$\begin{gathered} \geq 50.1 \mathrm{vs} .0 .1- \\ 10 \mathrm{~g} / \mathrm{d} \end{gathered}$	1.23 (0.66-2.28)	

Table 18 Total alcohol intake and skin cancer risk. Main characteristics of studies excluded from the linear dose-response meta-analysis.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{aligned} & \text { RR (95\% CI) } \\ & \text { Ptrend } \end{aligned}$	Adjustment factors	Reasons for exclusion
Schaumberg, 2004 SKI00367 USA	PHS, Nested casecontrol, Age: 40-84 years, M	$1338 / 1338$	Self-report followed by review of pathology reports	Not stated	Occurence NMSC	Yes (drink alcohol) vs. No (no alcohol)	Ptrend:<0.001	Age, smoking status	No measure of association provided
Fung, 2002a SKI00891 USA	NHS-HPFS, Prospective Cohort, Age: 30-75 years, M/W, Female nurses and Male Health Professionals	$\begin{gathered} 6088 / \\ 107975 \end{gathered}$ 8 years in women \& 10 years in men	Ongoing or prior study	FFQ	Incidence BCC	$\geq 30 \mathrm{~g} /$ day vs. Non-drinkers	$\begin{gathered} 1.12(1.01-1.26) \\ \text { Ptrend:0.0001 } \end{gathered}$	Age, area of residence, childhood area of residence, BMI , beer consumption, liquor consumption, missing FFQ, smoking habits, total energy, wine consumption	Superseded by Wu 2015
		$\begin{gathered} 3060 / \\ 107975 \\ 8 \text { years } \end{gathered}$			Incidence BCC Women	$\geq 30 \mathrm{~g} /$ day vs. Non-drinkers	$\begin{gathered} 1.06(0.89-1.28) \\ \text { Ptrend:0.001 } \end{gathered}$	Additionally adjusted for: ancestry, childhood sun reaction, childhood tanning ability, hair colour, lifetime blistering sunburn, sun screen use	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Reasons for exclusion
					Incidence BCC Men	$\geq 30 \mathrm{~g} /$ day vs. Non-drinkers	$\begin{gathered} 1.16(1.01-1.34) \\ \text { Ptrend:0.002 } \end{gathered}$	Additionally adjusted for: ancestry, eye colour, hair colour, tendency to burn in childhood, childhood sun exposure in swimsuit	
Adami, 1992 SKI22200 Sweden	Uppsala Alcoholics, Sweden, Prospective Cohort, Age: 50 years, M/W, Alcoholics	$\begin{gathered} 11 / \\ 9353 \\ 7.7 \text { years } \end{gathered}$	Cancer registry	Lifestyle grouping	Incidence Skin cancer Men	Alcoholics vs. Study population	0.80 (0.30-1.80)	Age	Inadequate categorisation
		1/			Incidence Skin cancer Women	Alcoholics vs. Study population	1.50 (0.00-8.20)		
Whittemore, 1985 SKI22091 USA	HPALS, Case Cohort, M/W, College alumni	$\begin{gathered} -/ \\ 51977 \end{gathered}$	Alumni offices and questionnaires	Questionnaire via mail	Incidence MM	Not stated	Not significant association was found	-	No measure of association provided

Figure 14 RR estimates of melanoma by levels of total alcohol intake

Kubo 2014 wIf I I
Asgari 2012 M/W I I I

$\begin{array}{llllll}1 & 10 & 20 & 30 & 40 & 50\end{array}$
Alcohol (as ethanol) intake (g/day)

Figure 15 RR (95% CI) of melanoma for the highest compared with the lowest level of total alcohol intake

Figure 16 Relative risk of melanoma per 10 g /day increase of total alcohol intake

Figure 17 Funnel plot of studies included in the dose response meta-analysis of total alcohol intake and melanoma

Figure 18 Nonlinear dose-response meta-analysis of total alcohol intake and melanoma

Table Relative risk of melanoma with alcohol intake using non-linear models

Ethanol (g/day)	RR (95\%CI)
0	1.00
0.8	$1.02(1.02-1.03)$
5.45	$1.15(1.11-1.19)$
6.88	$1.19(1.14-1.24)$
8.04	$1.21(1.16-1.27)$
17.7	$1.36(1.27-1.47)$
25.6	$1.39(1.28-1.50)$
30.6	$1.38(1.27-1.50)$
33.0	$1.37(1.26-1.49)$

Figure 19 RR estimates of BCC by levels of total alcohol intake

Freedman 2003 M/w of-FーIv,

Figure 20 RR ($\mathbf{9 5 \%} \mathbf{~ C I}$) of BCC for the highest compared with the lowest level of total alcohol intake

Note: Hamling method was used for Jensen, 2012.

Figure 21 Relative risk of BCC per 10g/day increase of total alcohol intake

Figure 22 Funnel plot of studies in the dose response meta-analysis of total alcohol and BCC

Funnel plot with pseudo 95\% confidence limits

Figure 23 Relative risk of BCC per 10g/day increase of total alcohol intake, by sex

Figure 24 Relative risk of BCC per $10 \mathrm{~g} /$ day increase of total alcohol intake, by geographic location

Figure 25 Nonlinear dose-response meta-analysis of total alcohol intake and BCC

Table Relative risk of BCC with alcohol intake using non-linear models

Ethanol (g/day)	RR $(95 \% \mathrm{CI})$
0	1.00
1.8	$1.04(1.03-1.05)$
5.0	$1.10(1.09-1.12)$
6.2	$1.13(1.11-1.15)$
8.0	$1.16(1.14-1.18)$
15.0	$1.25(1.21-1.28)$
25.0	$1.28(1.25-1.31)$
31.4	$1.26(1.22-1.30)$

Figure 26 RR estimates of SCC by levels of total alcohol intake

Figure 27 RR ($\mathbf{9 5 \%}$ CI) of SCC for the highest compared with the lowest level of total alcohol intake

Note: Hamling's method was used for Jensen, 2012.

Figure 28 Relative risk of SCC per 10g/day increase of total alcohol intake

3.7.1.1 Beer

Cohort studies

Summary
Four studies (three publications on melanoma, non-melanoma and SCC) were identified in the 2005 SLR and five new studies (six publications on melanoma, non-melanoma, SCC and $\mathrm{BCC})$ were identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

Statistically non-significant (positive) associations were observed in the prospective cohort from the Kaiser Permanente (Klatsky, 2015) and the WHI-OS study in USA (Kubo, 2014).

A Norwegian prospective cohort study reported statistically non-significant inverse association of beer drinking and melanoma in men (47 cases) compared with non-beer drinkers, IRR: $0.70,95 \% \mathrm{CI}=(0.30-1.40)$. A positive statistically non-significant association was found for women (61 cases), IRR: 1.40, $95 \% \mathrm{CI}=0.60-3.40$ (Veierod, 1997).

In a historical cohort study, Danish brewery workers (employed for at least six months between 1939 to 1963) did not have higher risk of developing melanoma (50 incident cases) compared to general Danish population, SIR: 1.12, 95% CI= 0.83-1.48 (Thygesen, 2005). An average brewery worker was consuming 77.7 g of ethanol (from beer) at work per day while an average adult Dane was consuming 163 g of from beer) per day in 1960 .

Non-Melanoma skin cancer

In the WHI-OS study, current beer drinkers had a higher risk of NMSC (9 593 cases) compared to non-drinkers, RR: 1.16; 95\% CI= 1.01-1.33 (Kubo, 2014).

The Danish brewery workers study reported that brewery workers had a non-statistically significant lower risk of non-melanoma skin cancer (329 cases) compared to the general Danish population, SIR: 0.90, 95% CI= 0.80-1.00 (Thygesen, 2005).

Basal cell carcinoma

A pooled analysis of the NHS, NHS II and HPFS cohorts found no association of beer consumption and BCC in men and women. No association was observed in an Australian follow-up community-based skin cancer study (Nambour Skin Cancer Study), which used randomly selected participants of a skin cancer prevention field trial (Ansems, 2008).

A large Danish prospective study found a statistically significant inverse association of beer consumption and BCC (RR for >50g/day vs. >0-10g/day: 0.70; 95\% CI=0.53-0.93, 2220 cases). Inverse but statistically non-significant results were found per $10 \mathrm{~g} /$ day increment (RR: $0.97 ; 95 \% \mathrm{CI}=0.93-1.00$). In analysis by sex, the hazard ratios per $10 \mathrm{~g} /$ day were 0.97 (95% $\mathrm{CI}=0.94-1.01$) in men and 1.03 ($95 \% \mathrm{CI}=0.94-1.12$) in women (Jensen, 2012).

Squamous cell carcinoma

No association between beer drinking and SCC was observed in The Nambour Skin Cancer Study ($\mathrm{RR}>161.3 \mathrm{~g} /$ day vs. abstainers: $0.79 ; 95 \% \mathrm{CI}=0.40-1.57$, p-trend $=0.43$) (Ansems, 2008). Results did not change substantially when participants with history of skin cancer were excluded from the analysis, however among participants with history of skin cancer a positive although statistically non-significant association was observed, RR: 1.53; 95\% $\mathrm{CI}=0.61-3.82$, p -trend $=0.34$.

Table 19 Beer consumption and skin cancer risk. Main characteristics of identified studies.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
$\begin{gathered} \text { Klatsky, } 2015 \\ \text { SKI23406 } \\ \text { USA } \end{gathered}$	КРМСР, Prospective Cohort, Age: 41 years, M/W	$\begin{gathered} 124193 \\ 17.8 \text { years } \end{gathered}$	Cancer registry	Questionnaire	Incidence MM	≥ 3 vs. ≤ 1 drinks/day	1.10 (0.60-2.00)	Age, sex, BMI, educational level, marital status, race/ethnicity, smoking, alcohol intake among drinkers of more than 1 drink per month
$\begin{gathered} \text { Wu, 2015d } \\ \text { SKI23407 } \\ \text { USA } \end{gathered}$	NHS, NHS II, HPFS, Prospective Cohort, M/W	$\begin{gathered} \hline 28951 / \\ 211462 \\ 3740000 \\ \text { person-years } \end{gathered}$	Self-report	FFQ	Incidence BCC	$\begin{gathered} \geq 10 \text { vs. } \leq 0 \\ \mathrm{~g} / \text { day } \end{gathered}$	$\begin{gathered} 1.00(0.85-1.17) \\ \text { Ptrend:0.71 } \end{gathered}$	BMI, caffeine consumption, cumulative UV flux since baseline, ethnicity, family history of melanoma, hair colour, number of moles on arms or legs, number of severe sunburns, physical activity, skin reaction to sun as a child/adolescent, smoking status, use of sunscreen in summer months, average time spent in direct sunlight in summer months, other alcoholic beverages listed in the table
		$9272 /$			Men	$\begin{gathered} \geq 10 \text { vs. } \leq 0 \\ \mathrm{~g} / \text { day } \end{gathered}$	$\begin{gathered} 1.06(0.97-1.15) \\ \text { Ptrend:0.38 } \end{gathered}$	
		19 679/			Women	$\begin{gathered} \geq 10 \text { vs. } \leq 0 \\ \mathrm{~g} / \text { day } \end{gathered}$	$\begin{gathered} 0.97(0.73-1.29) \\ \text { Ptrend:0.67 } \end{gathered}$	
$\begin{gathered} \text { Kubo, } 2014 \\ \text { SKI23408 } \\ \text { USA } \end{gathered}$	WHI, Prospective Cohort, Age: 50-79 years,	$\begin{gathered} 9593 / \\ 59575 \\ 10.2 \text { years } \end{gathered}$	Medical records by physicians	FFQ	Occurrence of incidence NMSC	Current drinker vs. Nondrinkers	1.16 (1.01-1.33)	Age, BMI, education years, having a healthcare provider, health insurance, history of melanoma, history of NMSC, Langleys
	Age: 50-79 years, W,	532/			Incidence	Current drinker	1.18 (0.68-2.04)	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	Postmenopausal				MM	vs. Nondrinkers		of exposure, physical activity, skin reaction to sun, smoking, childhood sun exposure, current summer sun exposure, use of sunscreen, last medical visit within 1 year
Jensen, 2012 SKI23410 Denmark	DCH, Prospective Cohort, Age: 50-64 years, M/W	$\begin{gathered} \hline 2220 / \\ 54766 \\ 11.4 \text { years } \\ \hline 2220 / \end{gathered}$	Cancer and pathology registries	FFQ + questionnaire	Incidence BCC	$\begin{gathered} \text { per } 10 \mathrm{~g} / \text { day } \\ \hline \begin{array}{c} \geq 50.1 \mathrm{vs} .0 .1- \\ 10 \mathrm{~g} / \text { day } \end{array} \\ \hline \end{gathered}$	0.97 (0.93-1.00) 0.70 (0.53-0.93)	Age, sex, BMI, education years, degree of freckling, number of nevi, sun sensitivity, mutually adjusted for the various types of alcohol
		$1224 /$				per $10 \mathrm{~g} / \mathrm{day}$	1.03 (0.94-1.12)	Age, BMI, education years,
		$1224 /$			Incidence BCC Women	$\begin{gathered} \geq 50.1 \mathrm{vs} .0 .1- \\ 10 \mathrm{~g} / \mathrm{day} \end{gathered}$	0.91 (0.29-2.83)	degree of freckling, number of nevi, sun sensitivity, menopausal status, use of hormone replacement therapy at baseline, , mutually adjusted for the various types of alcohol
		1 185/				per $10 \mathrm{~g} / \mathrm{day}$	0.97 (0.94-1.01)	Age, BMI, education years,
		1 185/			Incidence BCC Men	$\begin{gathered} \geq 50.1 \mathrm{vs} .0 .1- \\ \quad 10 \mathrm{~g} / \mathrm{day} \end{gathered}$	0.75 (0.56-1.01)	degree of freckling, number of nevi, sun sensitivity, mutually adjusted for the various types of alcohol
Ansems, 2008	NSCS,	127	Histology	Semi-	Tumour-based	$>161.3 \mathrm{~g} /$ day	0.79 (0.40-1.57)	Age, sex, beta carotene

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
SKI23411 Australia	Prospective Cohort, Age: 49.7 years, M/W	$\begin{gathered} 1360 \\ 12942 \text { person- } \\ \text { years } \end{gathered}$		quantitative FFQ	incidence SCC	vs. Abstainers	Ptrend:0.43	treatment, sunscreen treatment, pack-years of smoking until 1992, selfreported skin colour, elastosis of the neck, leisure time sun exposure, skin cancer before 1992
		1			No history of skin cancer	$>161.3 \mathrm{~g} /$ day vs. Abstainers	$\begin{gathered} 0.58 \text { (0.19-1.77) } \\ \text { Ptrend:0.17 } \end{gathered}$	
		1			History of skin cancer	$>161.3 \mathrm{~g} / \mathrm{day}$ vs. Abstainers	$\begin{gathered} 1.53 \text { (0.61-3.82) } \\ \text { Ptrend:0.34 } \end{gathered}$	
		267 1360 12942 person- years			Tumour-based incidence BCC	$>161.3 \mathrm{~g} / \mathrm{day}$ vs. Abstainers	$\begin{gathered} 1.36(0.86-2.15) \\ \text { Ptrend:0.27 } \end{gathered}$	Age, sex, beta carotene treatment, sunscreen treatment, elastosis of the neck, occupational sun exposure, leisure time sun exposure, history skin cancer before 1992
		1			No history of skin cancer	$>161.3 \mathrm{~g} / \mathrm{day}$ vs. Abstainers	$\begin{gathered} 1.55(0.80-2.99) \\ \text { Ptrend:0.27 } \end{gathered}$	
		1			History of skin cancer	$>161.3 \mathrm{~g} / \mathrm{day}$ vs. Abstainers	$\begin{gathered} 1.02 \text { (0.52-1.97) } \\ \text { Ptrend:0.89 } \end{gathered}$	
Ibiebele, 2007 SKI23445 Australia	NSCS, Prospective Cohort, Age: 20-69 years, M/W	1360 11 years	Histology	FFQ	Occurrence of incidence SCC History of skin cancer	Tertile3 vs. Tertile 1	1.18 (0.56-2.47)	Age, sex, skin colour, skin elastosis, smoking status, dietary supplement use, burn-tan propensity of the skin, total energy, treatment allocation
Thygesen, 2005 SKI22553 Denmark	Danish Brewery Workers' Union, Historical Cohort,	$\begin{gathered} 379 / \\ 13051 \end{gathered}$	Workers union members		Incidence Skin cancer	Danish brewery workers vs. General Danish male population	0.92 (0.83-1.02)	Age
		50/			Incidence MM		1.12 (0.83-1.48)	

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Author, Year, WCRF Code, Country \& Study name, characteristics \& \begin{tabular}{l}
Cases/ \\
Study size Follow-up (years)
\end{tabular} \& Case ascertainment \& Exposure assessment \& Outcome \& Comparison \& \[
\begin{gathered}
\text { RR }(95 \% \mathrm{CI}) \\
\text { Ptrend }
\end{gathered}
\] \& Adjustment factors \\
\hline \& \begin{tabular}{l}
M, \\
Brewery workers
\end{tabular} \& 329/ \& \& \& \begin{tabular}{l}
Incidence \\
NMSC
\end{tabular} \& \& 0.90 (0.80-1.00) \& \\
\hline \multirow{3}{*}{\begin{tabular}{l}
Fung, 2002a \\
SKI00891 \\
USA
\end{tabular}} \& \multirow{3}{*}{\begin{tabular}{l}
NHS-HPFS, \\
Prospective Cohort, \\
Age: 30-75 years, M/W, \\
Female nurses and Male Health Professionals
\end{tabular}} \& \[
\begin{gathered}
6088 / \\
107975 \\
8 \text { years in women } \\
\& 10 \text { years in } \\
\text { men }
\end{gathered}
\] \& \multirow{3}{*}{Ongoing or prior study} \& \multirow{3}{*}{FFQ} \& Incidence
\[
\mathrm{BCC}
\] \& \begin{tabular}{l}
\(\geq 30 \mathrm{~g} /\) day vs. \\
Non-drinkers
\end{tabular} \& \[
\begin{gathered}
0.90(0.73-1.10) \\
\text { Ptrend:0.78 }
\end{gathered}
\] \& \begin{tabular}{l}
Age, area of residence, childhood area of residence, \\
BMI, beer consumption, liquor consumption, missing FFQ, smoking habits, total energy, wine consumption
\end{tabular} \\
\hline \& \& \& \& \& \begin{tabular}{l}
Incidence \\
BCC \\
Men
\end{tabular} \& \begin{tabular}{l}
\(\geq 30 \mathrm{~g} /\) day vs. \\
Non-drinkers
\end{tabular} \& \[
\begin{gathered}
0.92 \text { (0.73-1.17) } \\
\text { Ptrend:0.95 }
\end{gathered}
\] \& Additionally adjusted for: ancestry, eye colour, hair colour, tendency to burn in childhood, childhood sun exposure in swimsuit \\
\hline \& \& \begin{tabular}{l}
3 060/ \\
107975 \\
8 years
\end{tabular} \& \& \& \begin{tabular}{l}
Incidence \\
BCC \\
Women
\end{tabular} \& \begin{tabular}{l}
\(\geq 30 \mathrm{~g} /\) day vs. \\
Non-drinkers
\end{tabular} \& \[
\begin{gathered}
0.82 \text { (0.53-1.27) } \\
\text { Ptrend:0.5 }
\end{gathered}
\] \& Additionally adjusted for: ancestry, childhood sun reaction, childhood tanning ability, hair colour, lifetime blistering sunburn, sun screen use \\
\hline \begin{tabular}{l}
Veierod, 1997 \\
SKI17728 \\
Norway
\end{tabular} \& \begin{tabular}{l}
Norway 19771983, \\
Prospective Cohort, \\
Age: 16-56 years, M/W
\end{tabular} \& \begin{tabular}{c}
\(61 /\) \\
50757 \\
12.4 years \\
\hline \(47 /\)
\end{tabular} \& \& FFQ \& \begin{tabular}{l}
Incidence
MM
Men \\
Women
\end{tabular} \& Yes vs. No \& 0.70 (0.30-1.40)

1.40 (0.60-3.40) \& Age, area of residence

\hline
\end{tabular}

3.7.1.2 Wine

Cohort studies

Summary

Three studies (two publications on BCC) were identified in the 2005 SLR and five new studies (five publications on melanoma, NMSC, BCC and SCC) were identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

A North American prospective cohort study reported a positive association between wine consumption (RR for three or more drinks/day compared to less than one drink: 1.70; 95\% $\mathrm{CI}=1.20-2.30$) and melanoma (1164 incidence cases) (Klatsky, 2015).

The WHI-OS study reported no association between wine consumption with melanoma (RR: 1.06 ; 95\% CI= 0.69-1.65) (Kubo, 2014).

Non-melanoma skin cancer

The WHI-OS study reported statistically non-significant increased risk of NMSC in current wine drinkers (9593 cases) compared to non- drinkers, RR: 1.11; 95\% CI= 1.00-1.23 (Kubo, 2014).

Basal cell carcinoma

A large Danish prospective study reported no association between wine consumption and BCC (RR for the comparison $>50 \mathrm{~g} /$ day vs. $>0-10 \mathrm{~g} /$ day: $0.98 ; 95 \% \mathrm{CI}=0.74-1.29,2409$ cases). Similar results were observed in analyses by sex (in women, RR: $0.98 ; 95 \% \mathrm{CI}=0.62-$ $1.53,1224$ cases; in men, RR: $1.04 ; 95 \% \mathrm{CI}=0.73-1.47,1185$ cases). In dose-response analysis, positive association for both gender combined (RR for $10 \mathrm{~g} /$ day increment: 1.05 ; $95 \% \mathrm{CI}=1.02-1.08$) and for men and women (RR for $10 \mathrm{~g} / \mathrm{day}: 1.04 ; 95 \% \mathrm{CI}=1.00-1.08$ and HR for $10 \mathrm{~g} /$ day: 1.06 ; $95 \% \mathrm{CI}=1.00-1.10$, respectively) were observed (Jensen, 2012).

BCC was not associated with wine consumption in the Finnish Adult Twin Cohort (Milan, 2003).

Red or white wines

Malignant melanoma

The WHI-OS study reported statistically non-significant increased risk in current drinkers of red wine compared to non- drinkers (RR: $1.34 ; 95 \% \mathrm{CI}=0.86-2.10$) and statistically significant increased risk in current drinkers of white wine compared to non- drinkers, RR: 1.52; 95\% CI=1.02-2.27 (Kubo, 2014).

Non-melanoma skin cancer

The WHI-OS study reported no association of current red wine drinking compared to no drinking alcohol (RR: $1.06 ; 95 \% \mathrm{CI}=0.94-1.18$, Kubo, 2014) but a statistically significant increased risk in current white wine drinkers compared to non- drinkers was observed (RR: $1.16 ; 95 \%$ CI= 1.05-1.28; Kubo, 2014).

Basal cell carcinoma

A pooled analysis of the NHS, NHS II and HPFS cohorts found no association between red wine drinking and BCC (28 951 cases) ($\mathrm{Wu}, 2015 d$). The results were the same for men and women. However, white wine intake was positively associated with increased risk of BCC (RR for $\geq 10 \mathrm{~g} /$ day of white wine vs. no alcohol: 1.22 (1.06-1.40), p-trend <0.0001; and HR per $10 \mathrm{~g} /$ day white wine increment: $1.10 ; 1.06-1.15$). The positive associations with white wine were statistically significant in men and women.

Statistically non-significant positive associations were observed for red and white wine in the Nambour Skin Cancer Study (RR for $>4.2 \mathrm{~g}$ /day of red wine vs. abstainers: 1.23 ; $95 \% \mathrm{CI}=$ $0.75-2.03$, p-trend $=0.93$; and for white wine consumption vs. abstainer, RR: $1.18 ; 95 \% \mathrm{CI}=$ $0.74-1.89$, p-trend $=0.47$) (Ansems, 2008). The results remained statistically non-significant when participants with history of skin cancer were excluded from the analysis (Ansems, 2008).

Squamous cell carcinoma

No associations with red wine or white wine were observed in the Nambour Skin Cancer Study (Ansems, 2008).

Fortified wine

Basal cell carcinoma

A statistically non-significant positive association of sherry/port consumption with BCC was found in the Nambour Skin Cancer Study (RR for $>1.2 \mathrm{~g} /$ day vs. abstainers: 1.52; 95\% $\mathrm{CI}=0.96-2.41$, p-trend $=0.29$ (Ansems, 2008). Similar results were found in analyses in participants with no history of skin cancer, RR: $1.46 ; 95 \% \mathrm{CI}=0.73-2.90$, p-trend=0.66.

Squamous cell carcinoma

A statistically non-significant positive association of sherry/port consumption with SCC was found in the Nambour Skin Cancer Study (RR for >1.2g/day vs. abstainers RR: 1.41; 95\% $\mathrm{CI}=0.74-2.70$, p-trend $=0.36$). In analyses only on participants with no history of skin cancer, statistically non-significant (inverse) association was observed (RR: 0.88; 95\% CI=0.29-2.65, p-trend=0.50) (Ansems, 2008).

Table 20 Wine consumption and skin cancer risk. Main characteristics of identified studies.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI) } \\ \text { Ptrend } \end{gathered}$	Adjustment factors
$\begin{gathered} \text { Klatsky, } 2015 \\ \text { SKI23406 } \\ \text { USA } \end{gathered}$	KPMCP, Prospective Cohort, Age: 41 years, M/W	124193 17.8 years	Cancer registry	Questionnaire	Incidence MM	$\begin{aligned} & \geq 3 \text { vs. } \leq 1 \\ & \text { drinks/day } \end{aligned}$	1.70 (1.20-2.30)	Age, sex, BMI, educational level, marital status, race/ethnicity, smoking, alcohol intake among drinkers of more than 1 drink per month
$\begin{gathered} \mathrm{Wu}, 2015 \mathrm{~d} \\ \text { SKI23407 } \\ \text { USA } \end{gathered}$	NHS, NHS II, HPFS, Prospective Cohort, M/W	$\begin{gathered} \hline 28951 / \\ 211462 \\ 3740000 \\ \text { person-years } \end{gathered}$	Self-report	FFQ	Incidence BCC	White wine ≥ 10 vs. ≤ 0 g/day	$\begin{aligned} & 1.22(1.06-1.40) \\ & \text { Ptrend:<0.0001 } \end{aligned}$	BMI, caffeine consumption, cumulative UV flux since baseline, ethnicity, family history of melanoma, hair colour, number of moles on arms or legs, number of severe sunburns, physical activity, skin reaction to sun as a child/adolescent, smoking status, use of sunscreen in
		28 951/				Red wine $\begin{gathered} \geq 10 \text { vs. } \leq 0 \\ \text { g/day } \end{gathered}$	$\begin{gathered} 0.99(0.89-1.10) \\ \text { Ptrend:0.67 } \end{gathered}$	
		$9 \text { 272/ }$			Me	White wine ≥ 10 vs. ≤ 0 g/day	$\begin{gathered} 1.10(0.96-1.25) \\ \text { Ptrend:0.08 } \end{gathered}$	
						Red wine ≥ 10 vs. ≤ 0 g/day	$\begin{gathered} 1.00 \text { (0.86-1.17) } \\ \text { Ptrend:0.94 } \end{gathered}$	
		19 679/			Women	White wine ≥ 10 vs. ≤ 0 g/day	$\begin{aligned} & 1.30(1.15-1.46) \\ & \text { Ptrend:<0.0001 } \end{aligned}$	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
						$\begin{aligned} & \text { Red wine } \\ & \geq 10 \text { vs. } \leq 0 \\ & \mathrm{~g} / \text { day } \end{aligned}$	$\begin{gathered} 0.98 \text { (0.85-1.14) } \\ \text { Ptrend:0.51 } \end{gathered}$	summer months, average time spent in direct sunlight in summer months, other alcoholic beverages listed in the table
$\begin{gathered} \text { Kubo, } 2014 \\ \text { SKI23408 } \\ \text { USA } \end{gathered}$	WHI, Prospective Cohort, Age: 50-79 years, W, Postmenopausal	$\begin{gathered} 9593 / \\ 59575 \\ 10.2 \text { years } \end{gathered}$	Medical records by physicians	FFQ	Occurrence of incidence NMSC	Current drinker vs. Non-drinkers	1.11 (1.00-1.23)	Age, BMI, education years, having a healthcare provider, health insurance, history of melanoma, history of NMSC, Langleys of exposure, physical activity, skin reaction to sun, smoking, childhood sun exposure, current summer sun exposure, use of sunscreen, last medical visit within 1 year
		$9 \text { 593/ }$			Occurrence of incidence NMSC	Red wine Current drinker vs. Non-drinkers	1.06 (0.94-1.18)	
		9 593/			Occurrence of incidence NMSC	White wine Current drinker vs. Non-drinkers	1.16 (1.05-1.28)	
		532/			Incidence MM	Current drinker vs. Non-drinkers	1.06 (0.69-1.65)	
		$532 /$			Incidence MM	White wine Current drinker vs. Non-drinkers	1.52 (1.02-2.27)	
		532/			Incidence MM	Red wine Current drinker vs. Non-drinkers	1.34 (0.86-2.10)	
Jensen, 2012	DCH,	2 409/	Cancer and	FFQ +	Incidence	per $10 \mathrm{~g} / \mathrm{d}$	1.05 (1.02-1.08)	Age, sex, BMI,

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
SKI23410 Denmark	Prospective Cohort, Age: 50-64 years, M/W	54766 11.4 years	pathology registries	questionnaire	BCC			education years, degree of freckling, number of nevi, sun sensitivity, mutually adjusted for the various types of alcohol
		$2 \text { 409/ }$				$\begin{aligned} & \geq 50.1 \text { vs. } 0.1-10 \\ & \mathrm{~g} / \mathrm{d} \end{aligned}$	0.98 (0.74-1.29)	
		$1224 /$				per $10 \mathrm{~g} / \mathrm{d}$	1.06 (1.00-1.10)	Age, BMI, education years, degree of freckling, number of nevi, sun sensitivity, menopausal status, use of hormone replacement therapy at baseline, , mutually adjusted for the various types of alcohol
		$1224 /$			Incidence BCC Women	$\begin{aligned} & \geq 50.1 \text { vs. } 0.1-10 \\ & \mathrm{~g} / \mathrm{d} \end{aligned}$	0.98 (0.62-1.53)	
		1 185/				per $10 \mathrm{~g} / \mathrm{d}$	1.04 (1.00-1.08)	Age, BMI, education years, degree of freckling, number of nevi, sun sensitivity, mutually adjusted for the various types of alcohol
		1 185/			Incidence BCC Men	$\begin{aligned} & \geq 50.1 \mathrm{vs.} 0.1-10 \\ & \mathrm{~g} / \mathrm{d} \end{aligned}$	1.04 (0.73-1.47)	
Ansems, 2008 SKI23411	NSCS, Prospective	$\begin{gathered} 127 \\ 1360 \end{gathered}$	Histology	Semi-quantitative FFQ	Tumour-based incidence	White wine $>8.4 \mathrm{~g} /$ day vs.	$\begin{gathered} 1.20(0.62-2.32) \\ \text { Ptrend:0.45 } \end{gathered}$	Age, sex, beta carotene treatment,

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{aligned} & \text { RR }(95 \% \mathrm{CI}) \\ & \text { Ptrend } \end{aligned}$	Adjustment factors
								1992
		267 1360 12942 person- years			Tumour-based incidence BCC	Fortified wine $>1.2 \mathrm{~g} /$ day vs. Abstainers	$\begin{gathered} 1.52(0.96-2.41) \\ \text { Ptrend:0.29 } \end{gathered}$	Age, sex, beta carotene treatment, sunscreen treatment, elastosis of the neck, occupational sun exposure, leisure time sun exposure, history skin cancer before 1992
		/			No history of skin cancer		$\begin{gathered} 1.46(0.73-2.90) \\ \text { Ptrend:0.66 } \end{gathered}$	
		1			History of skin cancer		$\begin{gathered} 1.58(0.85-2.95) \\ \text { Ptrend:0.33 } \end{gathered}$	
		127 1360 12942 person- years			Tumour-based incidence SCC	$\begin{aligned} & \text { Red wine } \\ & >4.2 \mathrm{~g} / \text { day vs. } \\ & \text { Abstainers } \end{aligned}$	$\begin{gathered} 0.64 \text { (0.30-1.36) } \\ \text { Ptrend:0.37 } \end{gathered}$	Age, sex, beta carotene treatment, sunscreen treatment, pack-years of smoking until 1992, self-reported skin colour, elastosis of the neck, leisure time sun exposure, skin cancer before 1992
		1			No history of skin cancer		$\begin{gathered} 0.22(0.05-1.07) \\ \text { Ptrend:0.25 } \end{gathered}$	
		/			History of skin cancer		$\begin{gathered} 1.50 \text { (0.60-3.79) } \\ \text { Ptrend:0.72 } \end{gathered}$	
		$\begin{gathered} 267 \\ 1360 \\ 12942 \text { person- } \\ \text { years } \end{gathered}$			Tumour-based incidence BCC	$\begin{gathered} \text { Red wine } \\ >4.2 \mathrm{~g} / \mathrm{day} \text { vs. } \\ \text { Abstainers } \end{gathered}$	$\begin{gathered} 1.23(0.75-2.03) \\ \text { Ptrend:0.93 } \end{gathered}$	Age, sex, beta carotene treatment, sunscreen treatment, elastosis of the neck,

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	RR ($\mathbf{9 5 \%}$ CI) Ptrend	Adjustment factors
		1			No history of skin cancer		$\begin{gathered} 0.72(0.32-1.60) \\ \text { Ptrend:0.13 } \end{gathered}$	occupational sun exposure, leisure
		1			History of skin cancer		$\begin{gathered} 1.65 \text { (0.84-3.23) } \\ \text { Ptrend:0.17 } \end{gathered}$	history skin cancer before 1992
$\begin{gathered} \text { Milan, } 2003 \\ \text { SKI00640 } \\ \text { Finland } \end{gathered}$	Finnish Adult Twin Cohort Study, Case Cohort, M/W	$\begin{gathered} 149 / \\ 13888 \\ 15.2 \text { years } \end{gathered}$	Population registry	Questionnaire	Incidence BCC Men	>1 vs. <1 glasses/week >2 times/month vs. Rarely/never	0.96 (0.58-2.01) $0.87(0.55-1.96)$	Age, ethnicity, sunlight
		184/			Incidence BCC Women	$>1 \text { vs. }<1$ glasses/week	1.11 (0.66-1.98)	
						>2 times/month vs. Rarely/never	1.30 (0.76-2.23)	
Fung, 2002a SKI00891 USA	NHS-HPFS, Prospective Cohort, Age: 30-75 years, M/W, Female nurses and Male Health Professionals	$6088 /$	Self-report	FFQ		Red wine ≥ 15 vs. nondrinkers g	$\begin{gathered} 0.79(0.45-1.39) \\ \text { Ptrend:0.23 } \end{gathered}$	Age, area of residence, childhood area of residence,
		107975 8 years in women \& 10 years in men			Incidence BCC	White wine ≥ 15 vs. nondrinkers g	$\begin{gathered} 1.24(0.97-1.60) \\ \text { Ptrend:0.01 } \end{gathered}$	consumption, liquor consumption, missing FFQ, smoking habits, total energy, wine consumption
		$\begin{gathered} 3028 / \\ 107975 \\ 10 \text { years } \end{gathered}$			Incidence BCC Men	Red wine ≥ 15 vs. nondrinkers g	$\begin{gathered} 1.00(0.67-1.49) \\ \text { Ptrend:0.64 } \end{gathered}$	Additionally adjusted for: ancestry, eye colour,

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
						$\begin{aligned} & \text { White wine } \\ & \geq 15 \text { vs. non- } \\ & \text { drinkers g } \end{aligned}$	$\begin{gathered} 1.07(0.79-1.45) \\ \text { Ptrend:0.24 } \end{gathered}$	hair colour, tendency to burn in childhood, childhood sun exposure in swimsuit
		$\begin{gathered} 3060 / \\ 107975 \\ 8 \text { years } \end{gathered}$			Incidence BCC Women	Red wine ≥ 15 vs. nondrinkers g	$\begin{gathered} 0.56 \text { (0.29-1.08) } \\ \text { Ptrend:0.004 } \end{gathered}$	Additionally adjusted for: ancestry, childhood sun reaction, childhood tanning ability, hair colour, lifetime blistering sunburn, sun screen use
				$\begin{aligned} & \text { White wine } \\ & \geq 15 \text { vs. non- } \\ & \text { drinkers } \mathrm{g} \end{aligned}$		$\begin{gathered} 1.39(1.11-1.73) \\ \text { Ptrend:0.0002 } \end{gathered}$		

3.7.1.3 Spirits

Cohort studies

Summary

Two studies (one publication on BCC) were identified in the 2005 SLR and five new studies (five publications on melanoma, non-melanoma, BCC and SCC) were identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

A large prospective cohort study carried out in North America reported no statistically significant association (positive) of liquor consumption and melanoma ($R R$ for three or more with less than one drink/day: 1.20; 95\% $\mathrm{CI}=0.70-2.10 ; 1164$ cases) (Klatsky, 2015).

The WHI-OS study reported an increased risk of melanoma in current liquor drinkers compared to non- drinkers, RR: 1.65 ; $95 \% \mathrm{CI}=1.07-2.55$, 532 cases (Kubo, 2014).

Non-melanoma skin cancer

The WHI-OS study reported an increased risk of NMSC in current liquor drinkers compared to non- drinkers, RR: 1.26; 95\% CI=1.13-1.41, 9593 cases (Kubo, 2014)

Basal cell carcinoma

The pooled analysis of the NHS, NHS II and HPFS cohorts found a positive statistically significant association between BCC and liquor consumption (RR per $10 \mathrm{~g} /$ day increment: $1.05 ; 95 \% \mathrm{CI}=1.03-1.07,13737$ cases and HR for $\geq 10 \mathrm{~g} /$ day vs. no alcohol consumption: $1.17 ; 95 \% \mathrm{CI}=1.12-1.23$, p -trend <0.000) that was similar in men and women ($\mathrm{Wu}, 2015 \mathrm{~d}$).

A large Danish prospective study reported statistically non-significant but increased BCC among heavy spirit drinkers ($>50 \mathrm{~g} /$ day) compared to light spirit drinkers (>0 to $\leq 10 \mathrm{~g} /$ day) overall and by sex. In dose-response analyses, the HR for $10 \mathrm{~g} /$ day increment was: 1.11; 95\% $\mathrm{CI}=1.02-1.21$ for men and women combined, 1.16; $95 \% \mathrm{CI}=1.05-1.29$ in men and 1.04; 95\% $\mathrm{CI}=0.88-1.23$ in women (Jensen, 2012).

Spirits consumption was not associated with BCC in the Nambour Skin Cancer Study (Ansems, 2008).

Squamous cell carcinoma

Spirits consumption was statistically non-significantly inversely associated with BCC in the Nambour Skin Cancer Study (Ansems, 2008).

Table 21 Spirit consumption and skin cancer risk. Main characteristics of identified studies.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR (95\%CI) } \\ \text { Ptrend } \end{gathered}$	Adjustment factors
$\begin{gathered} \text { Klatsky, } 2015 \\ \text { SKI23406 } \\ \text { USA } \end{gathered}$	КРМСР, Prospective Cohort, Age: 41 years, M/W	124193 17.8 years	Cancer registry	Questionnaire	Incidence MM	≥ 3 vs. ≤ 1 drinks/day	1.20 (0.70-2.10)	Age, sex, BMI, educational level, marital status, race/ethnicity, smoking, alcohol intake among drinkers of more than 1 drink per month
$\begin{gathered} \text { Wu, 2015d } \\ \text { SKI23407 } \\ \text { USA } \end{gathered}$	NHS, NHS II, HPFS, Prospective Cohort, M/W	$\begin{gathered} \hline 28951 / \\ 211462 \\ 3740000 \\ \text { person-years } \end{gathered}$	Self-report	FFQ	Incidence BCC	$\begin{gathered} \geq 10 \text { vs. } \leq 0 \\ \mathrm{~g} / \text { day } \end{gathered}$	$\begin{aligned} & 1.17(1.12-1.23) \\ & \text { Ptrend:<0.0001 } \end{aligned}$	BMI, caffeine consumption, cumulative UV flux since baseline, ethnicity, family history of melanoma, hair colour, number of moles on arms or legs, number of severe sunburns, physical activity, skin reaction to sun as a child/adolescent, smoking status, use of sunscreen in summer months, average time spent in direct sunlight in summer months, other alcoholic beverages listed in the table
		9 272/			Men	$\begin{gathered} \geq 10 \text { vs. } \leq 0 \\ \text { g/day } \end{gathered}$	$\begin{gathered} 1.15(1.07-1.23) \\ \text { Ptrend:0.002 } \end{gathered}$	
		19 679/			Women	$\begin{gathered} \geq 10 \text { vs. } \leq 0 \\ \mathrm{~g} / \text { day } \end{gathered}$	$\begin{aligned} & 1.19(1.12-1.27) \\ & \text { Ptrend:<0.0001 } \end{aligned}$	
$\begin{gathered} \text { Kubo, } 2014 \\ \text { SKI23408 } \\ \text { USA } \end{gathered}$	WHI, Prospective Cohort, Age: 50-79	$\begin{gathered} 9593 / \\ 59575 \\ 10.2 \text { years } \end{gathered}$	Medical records by physicians	FFQ	Occurrence of incidence NMSC	current drinker vs. non-drinkers	1.26 (1.13-1.41)	Age, BMI, education years, having a healthcare provider, health insurance, history of melanoma, history of NMSC, Langleys of exposure,
		532/			Incidence	current drinker	1.65 (1.07-2.55)	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	W, Postmenopausal				MM	vs. non-drinkers		physical activity, skin reaction to sun, smoking, childhood sun exposure, current summer sun exposure, use of sunscreen, last medical visit within 1 year
Jensen, 2012 SKI23410 Denmark	DCH, Prospective Cohort, Age: 50-64 years, M/W	$2409 /$ 54766 11.4 years $2409 /$	Cancer and pathology registries	$\begin{gathered} \text { FFQ + } \\ \text { questionnaire } \end{gathered}$	Incidence BCC	per $10 \mathrm{~g} / \mathrm{d}$ $\begin{aligned} & \geq 50.1 \mathrm{vs} .0 .1-10 \\ & \mathrm{~g} / \mathrm{d} \end{aligned}$	1.11 (1.02-1.21) 1.95 (0.49-7.82)	Age, sex, BMI, education years, degree of freckling, number of nevi, sun sensitivity, mutually adjusted for the various types of alcohol
		$1224 /$				per $10 \mathrm{~g} / \mathrm{d}$	1.04 (0.88-1.23)	Age, BMI, education years,
		$1224 /$			Women	$\begin{aligned} & \geq 50.1 \mathrm{vs} .0 .1-10 \\ & \mathrm{~g} / \mathrm{d} \end{aligned}$	3.09 (0.43-22.09)	degree of freckling, number of nevi, sun sensitivity, menopausal status, use of hormone replacement therapy at baseline, , mutually adjusted for the various types of alcohol
		1 185/				per $10 \mathrm{~g} / \mathrm{d}$	1.16 (1.05-1.29)	Ag , BMI, education years,
		1 185/			Men	$\begin{aligned} & \geq 50.1 \text { vs. } 0.1-10 \\ & \mathrm{~g} / \mathrm{d} \end{aligned}$	1.77 (0.25-12.66)	degree of freckling, number of nevi, sun sensitivity, mutually adjusted for the various types of alcohol
Ansems, 2008	NSCS,	127	Histology	Semi-quantitative	Tumour-based	>2.1 g/day vs.	0.68 (0.68-1.35)	Age, sex, beta carotene

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
SKI23411 Australia	Prospective Cohort, Age: 49.7 years, M/W	$\begin{gathered} 1360 \\ 12942 \text { person- } \\ \text { years } \end{gathered}$		FFQ	incidence SCC	Abstainers	Ptrend:0.27	treatment, sunscreen treatment, pack-years of smoking until 1992, selfreported skin colour, elastosis of the neck, leisure time sun exposure, skin cancer before 1992
		1			No history of skin cancer	>2.1 g/day vs. Abstainers	$\begin{gathered} 0.36(0.11-1.24) \\ \text { Ptrend:0.20 } \end{gathered}$	
		1			History of skin cancer	$>2.1 \mathrm{~g} / \mathrm{day}$ vs. Abstainers	$\begin{gathered} 1.33 \text { (0.57-3.12) } \\ \text { Ptrend:0.91 } \end{gathered}$	
		$\begin{gathered} 267 \\ 1360 \\ 12942 \text { person- } \\ \text { years } \end{gathered}$	Histology	Semi-quantitative FFQ	Tumour-based incidence BCC	$>2.1 \mathrm{~g} /$ day vs. Abstainers	$\begin{gathered} 1.12(0.70-1.79) \\ \text { Ptrend:0.31 } \end{gathered}$	Age, sex, beta carotene treatment, sunscreen treatment, elastosis of the neck, occupational sun exposure, leisure time sun exposure, history skin cancer before 1992
		1			No history of skin cancer	$>2.1 \mathrm{~g} /$ day vs. Abstainers	$\begin{gathered} 1.04 \text { (0.52-2.07) } \\ \text { Ptrend:0.31 } \end{gathered}$	
		1			History of skin cancer	$>2.1 \mathrm{~g} /$ day vs. Abstainers	$\begin{gathered} 1.15(0.61-2.17) \\ \text { Ptrend:0.90 } \end{gathered}$	
Fung, 2002a SKI00891 USA	NHS-HPFS, Prospective Cohort, Age: 30-75 years, M/W, female nurses and male health professionals	6088 107975 8 years in women \& 10 years in men	Ongoing or prior study	FFQ	Incidence BCC	$\begin{aligned} & \geq 30 \text { vs. non- } \\ & \text { drinkers } \mathrm{g} \end{aligned}$	$\begin{gathered} 1.12(0.88-1.42) \\ \text { Ptrend:0.003 } \end{gathered}$	Age, area of residence, childhood area of residence, BMI, beer consumption, liquor consumption, missing FFQ, smoking habits, total energy, wine consumption
		$\begin{gathered} 3060 / \\ 107975 \end{gathered}$ 8 years			Women	$\geq 30 \mathrm{~g} /$ day vs. non-drinkers	$\begin{gathered} 0.97 \text { (0.77-1.23) } \\ \text { Ptrend:0.13 } \end{gathered}$	Additionally adjusted for: ancestry, childhood sun reaction, childhood tanning ability, hair colour, lifetime

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{aligned} & \text { RR }(95 \% \mathrm{CI}) \\ & \text { Ptrend } \end{aligned}$	Adjustment factors
								blistering sunburn, sun screen use
		$\begin{gathered} 3028 / \\ 107975 \\ 10 \text { years } \end{gathered}$			Men	$\begin{aligned} & \geq 30 \text { vs. non- } \\ & \text { drinkers } \mathrm{g} \end{aligned}$	$\begin{gathered} 1.25(1.06-1.47) \\ \text { Ptrend:0.01 } \end{gathered}$	Additionally adjusted for: ancestry, eye colour, hair colour, tendency to burn in childhood, childhood sun exposure in swimsuit

3.7.1.4 Other alcoholic drinks

Cohort studies

One study on melanoma was identified in the 2005 SLR. No meta-analysis was conducted

Malignant melanoma

A Norwegian prospective study reported an IRR of 0.6 ; $95 \% \mathrm{CI}=0.30-1.20$ in men (47 cases) and $1.70 ; 95 \% \mathrm{CI}=0.90-3.20$ in women (61 cases) when comparing consumption of wine/liquor with no consumption (Veierod, 1997).

4 Food production, preservation, processing and preparation

4.1.2.7.2 Arsenic in drinking water

Note: Arsenic and inorganic arsenic compounds had been classified as "carcinogenic to humans" (Group 1) by the WHO International Agency for Research on Cancer Monograph Working Group. The judgement is supported by sufficient evidence from ecologic studies. The arsenic-associated skin tumours include SCC and BCC.
(In: A Review of Human Carcinogens Part C: Arsenic, metals, fibres and dusts, 2009, Lyon, France, at http://monographs.iarc.fr/ENG/Monographs/vol100C/mono100C.pdf . Tables of ecologic and case-control studies on arsenic from drinking water and skin cancer risks are in Appendix 4. Studies on environmental or occupational exposure to arsenic are not included)

Cohort studies

Summary
Two studies (two publications on skin cancer and melanoma) were identified in the 2005 SLR and one study (one publication on melanoma and NMSC) was identified in the CUP. No meta-analysis was conducted.

Skin cancer

A prospective study conducted in arseniasis-hyperendemic areas in Taiwan reported a statistically significantly positive association of arsenic concentration in drinking water and skin cancer risk, comparing $0.71-1.10$ vs. $0 \mathrm{mg} / \mathrm{L}, \mathrm{RR}: 8.69,95 \% \mathrm{CI}=(1.08-65.50)$, ptrend $=0.06,26$ cases (Hsueh, 1997).

Malignant melanoma

A historical cohort study on mortality from melanoma of the skin was conducted in Utah, USA (Lewis, 1999). The study reported a SMR: $0.83,95 \% \mathrm{CI}=(0.17-2.43$) in men (3 cases) and SMR: $1.82,95 \% \mathrm{CI}=(0.50-4.66)$ in women (4 cases), comparing ≥ 5000 vs. <1000 ppb-years.

A prospective cohort study conducted in Denmark (DCH), where concentrations of arsenic in drinking water are low (median $0.7 \mu \mathrm{~g} / \mathrm{L}$) reported a non-significant inverse association of
arsenic in drinking water and melanoma risk (147 cases), IRR: $0.80,95 \% \mathrm{CI}=(0.59-1.08)$ per $1 \mu \mathrm{~g} / \mathrm{L}$ in time-weighted average exposure (Baastrup, 2008).

Non-melanoma skin cancer

In the Danish cohort study, no association was reported with NMSC risk (1010 cases), IRR: $0.99,95 \% \mathrm{CI}=(0.94-1.06)$ per $\mu \mathrm{g} / \mathrm{L}$ in time-weighted average exposure (Baastrup, 2008).

Table 22 Arsenic and skin cancer risk. Main characteristics of identified studies.

Author, Year, WCRF Code, Country	Study name, characteristi cs	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
Cohort studies								
Baastrup, 2008SKI22196Denmark	DCH, Prospective Cohort, Age: 50-64 years, M/W	$\begin{gathered} 147 / \\ 56378 \\ 10 \text { years } \end{gathered}$	Danish cancer registry	Time weighted average exposure Questionnaire	Incidence, MM	Per $1 \mu \mathrm{~g} / \mathrm{litre}$	0.80 (0.59-1.08)	Area of enrolment, education, skin reaction to sun, suntanned during summer
		$1 \text { 010/ }$			Incidence, NMSC		0.99 (0.94-1.06)	Area of enrolment, education, skin reaction to sun, suntanned during summer, occupation
		147/		Cumulative exposure	Incidence, MM	Per 5 mg	0.96 (0.89-1.04)	Area of enrolment, education, skin reaction to sun, suntanned during summer
		$1010 /$			Incidence, NMSC		0.99 (0.97-1.01)	Area of enrolment, education, skin reaction to sun, suntanned during summer, occupation
Lewis, 1999 SKI14438 USA	Utah, USA 1900-1945, Historical Cohort, Age: 70 years,	$\begin{gathered} 3 / \\ 4058 \end{gathered}$	Church residency lists	Arsenic in drinking water Church records	Men	SMR (O/E)	0.83 (0.17-2.43)	Age, contemporary date
		$\begin{gathered} 4 / \\ 4058 \end{gathered}$			Mortality, MM, women		1.82 (0.50-4.66)	

Author, Year, WCRF Code, Country	Study name, characteristi cs	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	M/W, Mormons							
Hsueh, 1997 SKI02322 Taiwan	Taiwan 1989- 1992, Prospective Cohort,	$\begin{aligned} & 26 / \\ & 654 \end{aligned}$	Area residency lists	Average arsenic concentration in drinking water Interview	Incidence, skin cancer	$\begin{gathered} 0.71-1.1 \text { vs. } \leq 0 \\ \mathrm{mg} / \mathrm{litre} \end{gathered}$	$\begin{gathered} 8.69 \text { (1.08-65.50) } \\ \text { Ptrend: }<0.01 \end{gathered}$	Age, sex, educational level
	Age: 30years, M/W			Cumulative arsenic exposure	Incidence, skin cancer	>17.7 vs. ≤ 0 mg /litre-year	$\begin{gathered} 7.58 \text { (0.95-60.33) } \\ \text { Ptrend: }<0.01 \end{gathered}$	

Case-control studies

5 Dietary constituents

5.5.1.1 Retinol in blood
 Cohort studies

Summary
Six studies (eight publications on skin cancer, melanoma, SCC and BCC) were identified in the 2005 SLR and no new studies were identified in the CUP (Table 26).

No meta-analysis was conducted.

Skin cancer

In a nested case-control study conducted in UK (43 cases of melanoma) (Wald, 1986) and in a North-American study (18 cases) (Kark, 1981) retinol in blood was not related to skin cancer risk (RR not reported in the publications).

Malignant melanoma

A non- significant inverse association between circulating retinol and melanoma was reported in the Washington County study (RR: $0.40,95 \% \mathrm{CI}=0.10-1.60$ for the highest vs. lowest comparison, 30 cases) (Breslow, 1995) and in a Finnish cohort study (unadjusted RR:0.80, per one standard deviation increase in retinol, ptrend $=0.60$, 10 cases) (Knekt, 1991).

Basal cell carcinoma

No statistically significant associations of circulating retinol with BCC were reported in the Washington County study (RR: 3.30, $95 \% \mathrm{CI}=0.90-11.60$ for the highest vs. lowest comparison, 32 cases) (Breslow, 1995), and in the Finnish cohort study (FMCHES) (RR: $0.50,95 \% \mathrm{CI}=0.10-2.10$ in women (29 cases) and men (38 cases) (RR: $1.70,95 \% \mathrm{CI}=0.50-$ 5.10) for the comparison of highest vs. lowest quantiles) (Knekt, 1990a). In the Evans County, Georgia, Heart Study mean blood retinol at baseline was lower in the people without cancer than in the 12 cases identified during follow-up but no relative risk estimate or p value were reported (Kark, 1981).

Squamous cell carcinoma

No statistically significant associations were reported in the Skin Cancer Prevention Study (RR: 1.16, $95 \% \mathrm{CI}=0.60-2.23$, for >830 vs. $\leq 610 \mathrm{ng} / \mathrm{ml}, 129 \mathrm{cases}$) (Karagas, 1997) and in the Washington County study (RR: $1.80,95 \% \mathrm{CI}=0.60-5.80$ for the highest vs. lowest comparison, 37 cases) (Breslow, 1995).

5.5.1.1 Retinol in diet

Cohort studies

Summary

Two studies (three publications on melanoma and BCC) were identified in the 2005 SLR and two studies (two publications on melanoma, BCC and SCC) were identified in the CUP.

One meta-analysis was identified (Zhang, 2014) including six case-control and two cohort studies. The summary RR estimate for the highest compared with the lowest level of retinol in diet was 0.84 ($95 \% \mathrm{CI}=0.69-1.02$).

Malignant melanoma

In the VITAL cohort study (527 cases), a statistically non-significant inverse association was reported, (RR: $0.85,95 \% \mathrm{CI}=0.62-1.16$, comparing >638.4 vs. $\leq 280.5 \mu \mathrm{~g} /$ day) (Asgari, 2012). No association was reported in the Nurses' Health Study (414 cases) (RR: 1.07, 95\% CI= 0.74-1.55, comparing ≥ 850 vs. $<300 \mu \mathrm{~g} /$ day) (Feskanich, 2003).

Basal cell carcinoma

In a follow-up study of participants in an Australian cancer prevention trial, a statistically non-significant inverse association with dietary retinol was observed (RR: $0.79,95 \% \mathrm{CI}=$ ($0.49-1.30$), comparing 1066 vs. $247 \mu \mathrm{~g} /$ day). The analysis was tumour-based (321 BCC tumours in 149 participants) (Heinen, 2007). Statistically non-significant associations of opposite direction were reported in participants without history of skin cancer ($n=658$), RR: $1.10,95 \% \mathrm{CI}=(0.47-2.50)$ and with history of skin cancer ($\mathrm{n}=311$), RR: $0.69,95 \% \mathrm{CI}=$ (0.39-1.20), respectively.

In the Nurses' Health Study, dietary retinol intake was positively associated with BCC (5 392 cases) (RR: $1.20,95 \% \mathrm{CI}=$ (1.10-1.30), for 6378 vs. $1185 \mathrm{IU} / \mathrm{day}$) in an analysis adjusted for important potential confounders including hair colour, eye colour, ancestry, current state of residence and at younger age, tendency to burn in childhood and childhood sun exposure in swimsuit (Fung, 2002b). Women with higher intakes of retinol appeared to be leaner, used sunscreen more often, smoked less, and lived in states with higher ambient sun radiation and although the analyses were multivariable adjusted, residual confounding by sun exposure and sun sensitivity cannot be ruled out.

Squamous cell carcinoma

In a follow-up of participants in an Australian cancer prevention trial, statistically nonsignificant positive association was observed (RR: 1.20, $95 \% \mathrm{CI}=$ ($0.70-2.10$), comparing 1 066 vs. $247 \mu \mathrm{~g} / \mathrm{day}$. The analyses were tumour-based (221 tumours in 116 participants) (Heinen, 2007). Similarly, statistically non-significant positive associations were reported in participants with no skin cancer history (RR: 2.10, $95 \% \mathrm{CI}=0.60-7.30,646$ cases) and in participants with skin cancer history (RR: $1.10,95 \% \mathrm{CI}=$ ($0.60-2.00,294$ cases) comparing the highest and the lowest tertiles).

Table 23 Retinol in diet and skin cancer risk. Results of meta-analyses of prospective studies published after the 2005 SLR.

Author, Year	Number of studies	Total number of cases	Studies country, area	Outcome	Comparison	RR (95\% CI)	Heterogeneity $(\mathbf{I}, \mathbf{p}, \mathbf{p}$ value $)$
Meta-analyses							
Zhang, 2014	2 cohort and 6 case-						
	2776	USA, Italy	Melanoma	Highest vs lowest	$0.84(0.70-1.01) 20 \%, \mathrm{p}=0.27$		

5.5.1.1 Total retinol intake

Cohort studies

Summary

Two studies (four publications on melanoma, BCC and SCC) were identified in the 2005 SLR and one study (one publication on melanoma) was identified in the CUP (Table 26).

One meta-analysis was identified (Zhang, 2014). The summary RR estimate for the highest compared with the lowest level of retinol in one case-control and two cohort studies was 0.84 ($95 \% \mathrm{CI}=0.69-1.02$). The two cohort studies are reviewed below.

Malignant melanoma

In the VITamins And Lifestyle (VITAL) cohort study (516 cases), total retinol intake from diet and supplements was inversely but statistically not significantly related to melanoma (RR: $0.84,95 \% \mathrm{CI}=0.64-1.10$, comparing $>1771.4 \mathrm{vs} . \leq 514.2 \mu \mathrm{~g} /$ day) (Asgari, 2012). Similar results were reported in two cohorts of nurses (NHS and NHS II, 414 cases) (RR: $0.85,95 \% \mathrm{CI}=0.63-1.16$, comparing ≥ 1800 vs. $<400 \mu \mathrm{~g} /$ day) (Feskanich, 2003). Both studies were multivariable adjusted including skin sensitivity to sunburn and severe sunburns in young age.

Basal cell carcinoma

Total retinol intake was not associated with BCC in the Nurses' Health Study (771 cases) (RR: $0.98,95 \% \mathrm{CI}=0.78-1.22$, comparing 7131 vs. $819 \mathrm{IU} /$ day) (Hunter, 1992) and in the Health Professional Follow-up Study (3190 cases) (RR: $0.99,95 \%$ CI $=0.84-1.16$, comparing 12533 vs. 1053 IU/day) (van Dam, 2000).

Squamous cell carcinoma

In a pooled analysis of the Nurses' Health Study and Health Professional Follow-up Study (674 cases) a statistically non-significant inverse association with SCC was observed, RR: $0.85,95 \% \mathrm{CI}=0.67-1.09$, comparing highest vs. lowest intakes) (Fung, 2003). The RR estimates was 0.76 ; $95 \% \mathrm{CI}=0.55-1.05$; p trend $=0.16$ in women and 0.98 ($95 \% \mathrm{CI}: 0.68-$ 1.41); p-trend $=0.75$ in women and men respectively for the highest vs. lowest comparisons.

Table 24 Retinol in diet and supplement and skin cancer risk. Results of meta-analyses of prospective studies published after the 2005 SLR.
$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { Author, Year } & \text { Number of studies } & \begin{array}{c}\text { Total } \\ \text { number } \\ \text { of cases }\end{array} & \begin{array}{c}\text { Studies country, } \\ \text { area }\end{array} & \text { Outcome } & \text { Comparison } & \text { RR (95\% CI) }\end{array} \begin{array}{c}\text { Heterogeneity } \\ \left(\mathbf{I}^{\mathbf{2}}, \mathbf{p} \text { value) }\right.\end{array}\right]$

5.5.1.1 Retinol in supplement

Randomised controlled trials

Summary
Two RCTs (three publications on BCC and SCC) were identified in the 2005 SLR and no new studies were identified in the CUP (Table 26).

In the SKICAP trial, 525 subjects with a history of at least four basal cell carcinomas and/or cutaneous squamous cell carcinomas were entered into a randomized, double-blind, placebocontrolled trial to receive oral retinol (25000 IU), isotretinoin ($5-10 \mathrm{mg}$), or a placebo supplementation daily for 3 years. The three intervention groups had very similar distributions of all characteristics at randomization. The primary end points for the trial were time to first new SCC or BCC. There were no differences in compliance between the three groups. Over 95% of the participants reported taking at least 50% of the total number of capsules, and over 80% of the participants reported taking at least 75% of the total number of capsules. Attrition rates were high in all groups. The proportion of people with side effects was higher in the isotretinoin-treated group, but the overall degree of toxicity was modest.

In the SKICAP-AK trial, 2297 subjects with moderate skin cancer risk (history of more than 10 actinic keratoses and at most 2 squamous cell carcinoma or basal cell carcinoma skin cancers were randomly assigned to receive oral retinol $(25,000 \mathrm{IU})$ or placebo supplementation daily for up to 5 years. Baseline characteristics were similar between the two groups. The primary end points for the trial were time to first new SCC or BCC. Median follow-up time was 3.8 years. Capsule count adherence (at least 85% of subjects taking at least three quarters of their capsules) and clinical adverse symptoms were very similar between the two groups (approximately 1% higher in the retinol group than in the control group) (Moon, 1997a).

The results of the largest trial (SKICAP-AK) showed a protective effect of retinol supplementation for preventing new SCC tumours but not BCC in moderate risk subjects. The smaller trial (SKICAP) did not show any effect of retinol supplementation on incidence of new BCC or SCC tumours.

Basal cell carcinoma

In the SKICAP trial, time to first occurrence of BCC did not differ between those who received the retinol, isotretinoin or placebo (Levine, 1997; Moon, 1997b). Participants on retinol had new 106 tumours (33.2% of the total); those who were given isotretinoin developed 103 tumours (32.2% of the total); and those treated with a placebo had 110 tumours (34.4% of the total).

In the SKICAP-AK trial, 417 subjects had a first new BCC. There was no difference between retinol and placebo groups (RR: 1.06, $95 \% \mathrm{CI}=0.86-1.32, \mathrm{P}=0.36$). The cumulative probability of a first new BCC in 5 years was 0.22 for the retinol group and 0.21 for the placebo group (Moon, 1997a).

Squamous cell carcinoma

In the SKICAP trial, retinol treatment had no effect on SCC incidence; no risk estimate was reported (Levine, 1997; Moon, 1997b). Retinol-treated participants accounted for 41 SCC (32.8% of the total); isotretinoin-treated participants had 40 tumours (32% of the total); and those on placebo capsules had 41 tumours (32.8% of the total).

In the SKICAP-AK trial, retinol supplementation was effective in reducing first new SCC (RR: $0.68,95 \% \mathrm{CI}=0.51-0.92, \mathrm{P}=0.04$) compared to placebo. Of the 249 subjects with a first new SCC, 113 cases were diagnosed in the retinol group and 136 in the placebo group (Moon, 1997a).

Cohort studies

No studies were identified in the 2005 SLR and one study (one publication on melanoma) was identified in the CUP (Table 26).

One meta-analysis was identified (Zhang, 2014). The summary RR estimate of one casecontrol and one cohort study was $0.87(95 \% \mathrm{CI}=0.51-1.04)$.

Malignant melanoma

In the VITAL cohort study (554 cases), the risk of melanoma was lower in current retinol supplement users compared to non-users (RR: $0.60,95 \% \mathrm{CI}=0.41-0.89$). There was no association with former supplement use. In analysis by intake level, the association was marginally significant for high dose ($>1200 \mu \mathrm{~g} /$ day -higher than in a standard multivitamin) compared to non-use (RR: $0.74,95 \% \mathrm{CI}=0.55-1.00$) (Asgari, 2012) and no association at the intermediate level (19.3-1,200 $\mu \mathrm{g}$ per day). The inverse association was driven by a risk reduction in women (RR: $0.27 ; 95 \% \mathrm{CI}=0.11-0.66,6$ user and 188 non user cases). There was no statistically significant association in men (RR: $0.83 ; 95 \% \mathrm{CI}=0.54-1.27 ; 22$ users and 318 non user cases). The reduction in melanoma risk was stronger in sun-exposed anatomic sites.

Table 25 Retinol in supplement and skin cancer risk. Results of meta-analyses of prospective studies published after the 2005 SLR.

Author, Year	Number of studies	Total number of cases	Studies country, area	Outcome	Comparison	RR (95\%CI)	Heterogeneity ($\mathbf{I}^{2}, \mathbf{p}$ value)
Meta-analyses							
Zhang, 2014	1 cohort and 1 casecontrol study	844	USA	Melanoma	Highest vs. lowest	0.87 (0.51-1.47)	$55.2 \%, \mathrm{p}=0.11$
Bath- Hextall, 2007	2 randomised control trials (Levine, 1997 SKICAP; Moon, 1997 SKICAP-AK)	2822	USA	Incident BCC Incident SCC	Highest vs. lowest	$\begin{aligned} & 1.07(0.91-1.25) \\ & 0.92(0.57-1.49) \end{aligned}$	0\%

Table 26 Total, dietary or supplemental retinol and skin cancer risk. Main characteristics of identified studies.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
Asgari, 2012 USA	VITAL, Prospective Cohort, Age: 50-76 years, M/W	$\begin{gathered} 516 / \\ 69635 \\ 5.84 \text { years } \end{gathered}$	SEER cancer registry	Total 120-item FFQ		$\begin{aligned} & >1771.4 \mathrm{vs} . \\ & \leq 514.2 \mu \mathrm{~g} / \mathrm{day} \end{aligned}$	$\begin{gathered} 0.84 \text { (0.64-1.10) } \\ \text { Ptrend:0.33 } \end{gathered}$	
		527/		Dietary	Incidence, MM	$\begin{aligned} & \quad>638.4 \text { vs. } \\ & \leq 280.5 \mu \mathrm{~g} / \mathrm{day} \end{aligned}$	$\begin{gathered} 0.85 \text { (0.62-1.16) } \\ \text { Ptrend:0.72 } \end{gathered}$	Age, gender, education, BMI,
		554/		Supplement (includes multivitamin sources)		>1 $200 \mu \mathrm{~g} /$ day vs. non-user	$\begin{gathered} 0.74(0.55-1.00) \\ \text { Ptrend:0.28 } \end{gathered}$	ages $10-20, \geq 3$ severe sunburns between ages $10-20$, red or
		350/			Men		$\begin{gathered} 0.77(0.53-1.12) \\ \text { Ptrend:0.60 } \end{gathered}$	blond hair between the ages 1020 , reaction to 1 h in strong
		204/			Women		$\begin{gathered} 0.71 \text { (0.43-1.16) } \\ \text { Ptrend:0.29 } \end{gathered}$	melanoma, history of NMSC, mole removed, macular
		534/		Individual supplement use	Incidence, MM	Current vs. non-user	0.60 (0.41-0.89)	degeneration
		340/			Men		0.83 (0.54-1.27)	
		194/			Women		0.27 (0.11-0.66)	
Heinen, 2007 Australia	NSCS, Follow-up of a trial on skin cancer,	$\begin{gathered} 116 \text { (221 tumours)/ } \\ 1001 \\ 8 \text { years } \end{gathered}$	Questionnaires , confirmed through histological reports	Dietary 129-item semiquantitative FFQ	Tumour- based incidence, SCC	1066 vs. 247 $\mu \mathrm{g} / \mathrm{day}$	$\begin{gathered} 1.20(0.70-2.10) \\ \text { Ptrend:0.47 } \end{gathered}$	Additionally adjusted for tanning ability of skin
	Age: avg. between 53-65,	646 participants			No skin cancer		2.10 (0.60-7.30)	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
Fung, 2003 SKI00818 USA	NHS and HPFS pooled	$\begin{gathered} 674 / \\ 129811 \end{gathered}$	Self-report confirmed by medical records	Total FFQ	Incidence, SCC	Q5 vs. Q1	$\begin{gathered} 0.85(0.67-1.09) \\ \text { Ptrend:0.23 } \end{gathered}$	Age, area of residence, area of residence, BMI , beer consumption, liquor, missing FFQ, smoking habits, total energy, wine
	NHS , Prospective Cohort, Age: 30-75 years, M/W, female nurses	$\begin{gathered} 369 / \\ 85944 \\ 14 \text { years max } \end{gathered}$			Incidence, SCC, women	8677 vs. 1 185 IU/day	$\begin{gathered} 0.76(0.55-1.05) \\ \text { Ptrend:0.16 } \end{gathered}$	Ancestry, childhood sun reaction, childhood tanning ability, hair colour, lifetime blistering sunburn, sun screen use
	HPFS, Prospective Cohort, Age: 30-75 years, M/W, male health professionals	$\begin{gathered} 305 / \\ 43867 \\ 10 \text { years max } \end{gathered}$			Incidence, SCC, men	$\begin{gathered} 11021 \text { vs. } 1 \\ 131 \mathrm{IU} / \text { day } \end{gathered}$	$\begin{gathered} 0.98 \text { (0.68-1.41) } \\ \text { Ptrend:0.75 } \end{gathered}$	Childhood sun exposure in swimsuit, eye colour, tendency to burn in childhood
Fung, 2002b SKI01012 USA	NHS, Prospective Cohort, Age: 30-55 years, W,	$\begin{gathered} 5392 / \\ 85836 \\ 8 \text { years } \end{gathered}$	Not stated	Dietary (cumulative average intake) FFQ	Incidence, BCC	6378 vs. 1185 IU/day	$\begin{gathered} 1.20(1.10-1.30) \\ \text { Ptrend:0.0009 } \end{gathered}$	Age, ancestry, area of residence, BMI, beer consumption, childhood sun exposure, energy intake, eye colour, hair colour, liquor, missing FFQ, red wine,

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	female nurses							smoking habits, tendency to burn in childhood, white wine
Van Dam, 2000 SKI01672 USA	HPFS, Prospective Cohort, Age: 40-75 years, M, health professionals	$\begin{gathered} 3190 / \\ 43217 \end{gathered}$	Self-reported	Total FFQ	Incidence, BCC	$\begin{gathered} 12533 \text { vs. } 1 \\ 053 \text { IU/day } \end{gathered}$	$\begin{gathered} 0.99(0.84-1.16) \\ \text { Ptrend:0.55 } \end{gathered}$	Age, 2 year follow-up periods, carotenes, folate, frequency of physical examinations, hair colour, major ancestry, mean solar radiation, smoking habits, vitamin C, vitamin D, vitamin E, energy intake, BMI
$\begin{gathered} \text { Karagas, } \\ 1997 \\ \text { SKI02443 } \\ \text { USA } \end{gathered}$	SKICAP, Nested Case Control, Age: 35-84 years, M/W, History >1 BCC or SCC		Questionnaire every 4 months and annual dermatological examination	Plasma retinol measured using HPLC	Incidence, SCC Any SCC	$\begin{gathered} >830 \mathrm{vs} . \\ \leq 610 \mathrm{ng} / \mathrm{ml} \end{gathered}$	1.16 (0.60-2.23) Ptrend:0.31 1.43 (0.77-2.64)	Age, sex, study centre (matching factors), adjusted for smoking habits
$\begin{gathered} \text { Levine, } 1997 \\ \text { SKI02273 } \\ \text { USA } \end{gathered}$	SKICAP, Randomised Control Trial, Age: 21-85 years, M/W, history of $>/=4$ BCC/SCC	110 (placebo)106 (treatment)/ 173 (treatment), 174 (placebo) 3 year intervention 41 (placebo) 41 (treatment)/	Examination by dermatologist every 6 months	Supplementation with 25000 units of retinol daily	Incidence, BCC SCC	Treatment vs. placebo	-	Age, sex, number of moles and freckles, number of prior skin cancers, skin type, sun exposure

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	SKICAP-S/B (SKICAP), subjects with history of ≥ 4 prior skin cancers	/174 (placebo), 173 (treatment) 3 year intervention					No effect on BCC or SCC incidence	
$\begin{gathered} \text { Breslow, } \\ 1995 \\ \text { SKI02677 } \\ \text { USA } \end{gathered}$	Maryland USA 1974-1975, Nested Case Control, Age: 18- years, M/W	$\begin{gathered} 30 / \\ 25620 \end{gathered}$	-	Serum retinol measured using HPLC	Incidence, MM	Q 3 vs. Q 1	$\begin{gathered} 0.40(0.10-1.60) \\ \text { Ptrend:0.23 } \end{gathered}$	Adjustment for smoking, education, hours since last meal did not substantially change results
		32			BCC		3.30 (0.90-11.60)	
		37			SCC		$\begin{gathered} 1.80(0.60-5.80) \\ \text { Ptrend:0.35 } \end{gathered}$	
Hunter, 1992	NHS, Prospective Cohort,	771/	Self-reports	Dietary FFQ	Inci	$\begin{gathered} 5190 \text { vs. } 683 \\ \text { IU/day } \end{gathered}$	$\begin{gathered} 1.07 \text { (0.85-1.33) } \\ \text { Ptrend:0.28 } \end{gathered}$	Area of residence, BMI, childhood tendency to sunburn,
USA	years, W, nurses		records	Total		$\begin{gathered} 7131 \text { vs. } 819 \\ \text { IU/day } \end{gathered}$	$\begin{gathered} 0.98 \text { (0.78-1.22) } \\ \text { Ptrend:0.42 } \end{gathered}$	lifetime severe and painful sunburn, UV exposure
$\begin{gathered} \text { Knekt, } 1991 \\ \text { SKI03576 } \\ \text { Finland } \end{gathered}$	FMCHES, Nested Case Control, Age: 15- years, M/W	$\begin{aligned} & 10 / \\ & 28 \end{aligned}$	Finnish cancer registry	Serum retinol measured using HPLC	Incidence, MM	Per one standard unit (standard deviation)	$\begin{gathered} 0.80 \\ \text { Ptrend:0.60 } \end{gathered}$	Unadjusted

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
$\begin{gathered} \text { Knekt, } \\ \text { 1990a } \\ \text { SKI22124 } \\ \text { Finland } \end{gathered}$	FMCHES, Nested Case Control, Age: 15-99 years, M/W	$38 / 110$	Finnish cancer registry	Serum retinol	Incidence, BCC, Men, after excluding first two years of follow-up	Lowest vs. higher quintiles	1.70 (0.50-5.10)	Smoking
		29/81			Women		0.50 (0.10-2.10)	
$\begin{gathered} \text { Wald, } 1986 \\ \text { SKI22127 } \\ \text { UK } \end{gathered}$	BUPA, Nested Case Control, Age: 35-64 years, M	43/	National Health Service records	Serum retinol measured using HPLC	Incidence, skin cancer	$\begin{aligned} & \text { (mean } \\ & \text { exposure) } \end{aligned}$	-	-
$\begin{gathered} \text { Peleg, } 1984 \\ \text { SKI23392 } \\ \text { USA } \end{gathered}$	Evans County Study, Nested Case Control, Age: 15-years, M/W	3102	-	Serum retinol	Incidence, skin cancer	$\begin{aligned} & \text { (mean } \\ & \text { exposure) } \end{aligned}$	-	-
$\begin{gathered} \text { Kark, } 1981 \\ \text { SKI22128 } \\ \text { USA } \end{gathered}$	Evans County Study, Case Cohort, Age: 15- years, M/W	$\begin{gathered} 18 / \\ 3102 \end{gathered}$	Follow-up examinations	Serum retinol	Incidence, skin cancer	(mean exposure)	-	Age, sex, ethnicity
		12/			Incidence, BCC	(mean exposure)	-	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
Wald, 1980 SKI04913 UK	BUPA, Nested Case Control, Age: 35-64 years, M	45/	Health screening programme	Serum retinol	Incidence, skin cancer	(mean exposure)	-	-

5.5.1.2 Beta-carotene in blood

Cohort studies

Summary

Eight studies (10 publications on skin cancer, melanoma, NMSC, BCC and SCC) were identified in the 2005 SLR and no new studies (one publication on BCC and SCC) were identified in the CUP (Table 28).

No meta-analysis was conducted.

Skin cancer

In a small study (16 cases) conducted in arseniasis hyperendemic villages in Taiwan, there was an inverse association between serum levels of beta-carotene and subsequent skin cancer (RR for >0.18 vs. $\leq 0.14 \mu \mathrm{~g} / \mathrm{ml}: 0.01,95 \% \mathrm{CI}=(0.00-0.37$) (Hsueh, 1997). In a case-control nested in a prospective study conducted in UK (BUPA), skin cancer cases had 8% lower mean serum beta-carotene concentrations than unaffected controls (Wald, 1988).

Malignant melanoma

In a meta-analysis of two cohort studies in the 2005 SLR, the summary RR for each $1 \mu \mathrm{~g} / 100$ ml increment was $0.90,95 \% \mathrm{CI}=0.78-1.03, \mathrm{I}=73 \%, \mathrm{p}=0.06$ (Breslow, 1995; Knekt, 1991).

No new cohort studies were identified in the CUP.

Basal cell carcinoma

In a nested case-control study in an Australian community based prospective study on skin cancer, serum beta-carotene levels were not associated with subsequent BCC (RR: 1.15, 95\% $\mathrm{CI}=0.88-1.50$ for each quartile increment, 90 cases) and $\mathrm{RR}: 1.07,95 \% \mathrm{CI}=0.59-1.96$, comparing 1.1 vs. $0.3 \mu \mathrm{~mol} / \mathrm{L}, 77$ cases) (McNaughton, 2005, van der Pols, 2009).

In the Isotretinoin-BCC trial that included participants with history of at least two BCC, serum beta-carotene levels were not related to subsequent BCC (RR: 1.01, $95 \% \mathrm{CI}=0.71-$ 1.44 , comparing T3 vs. T1) (Dorgan, 2004).

No association was also reported in a North American study (RR: 1.30, 95\% CI= 0.40-4.00) (Breslow, 1995) and a Finnish study (RR: $3.10,95 \% \mathrm{CI}=0.90-10.60$ in men $0.40,95 \% \mathrm{CI}=$ 0.10-1.70 in women, for the highest vs. lowest comparisons) (Knekt, 1990a).

Squamous cell carcinoma

In the 2005 SLR, the summary RR for $1 \mu \mathrm{~g} / 100 \mathrm{ml}$ increment of serum beta-carotene was $0.99,95 \% \mathrm{CI}=(0.98-1.00)$ combining two cohorts (Karagas, 1997, Dorgan, 2004). The SKICAP study (Karagas, 1997) included participants with a history of at least one BCC or SCC and the ISOBCC trial included participants with a history of at least two BCC (Dorgan, 2004). Another study not included in the dose-response meta-analysis reported a statistically non-significant positive association (RR: $1.40,95 \% \mathrm{CI}=0.50-4.00$ for the highest vs. lowest comparison) (Breslow, 1995).

No association was also observed in the Australian community based prospective study on skin cancer (RR: $0.92,95 \% \mathrm{CI}=0.47-1.81$, comparing $1.1 \mathrm{vs} .0 .3 \mu \mathrm{~mol} / \mathrm{L}, 59$ cases) (van der Pols, 2009).

Non-melanoma skin cancer

In a nested case-control study within the Physicians' Health Study trial, baseline plasma betacarotene concentration was not associated with NMSC risk, RR: 0.97, 95% CI= 0.69-1.37, for $\geq 23.29 \mathrm{vs} . \leq 7.28 \mu \mathrm{~g} / \mathrm{dL}$ among subjects assigned to placebo (Schaumberg, 2004). (See results of the Physicians' Health Study (Frieling, 2000) trial of beta-carotene supplementation under 5.5.1.2. Beta-carotene in supplements).

5.5.1.2 Beta-carotene in diet

Cohort studies

Summary
Two studies (two publications on BCC) were identified in the 2005 SLR and one new study (one publication on melanoma) was identified in the CUP (Table 28).

No meta-analysis was conducted.

Malignant melanoma

In the VITamins And Lifestyle (VITAL) cohort study (519 cases), beta-carotene in diet was not related to melanoma risk (RR: $1.15,95 \% \mathrm{CI}=0.87-1.53$, comparing >5648.5 vs. ≤ 2 $138.8 \mu \mathrm{~g} / \mathrm{day}$) (Asgari, 2012).

Basal cell carcinoma

In the Australian community prospective study (NSCS, 90 cases), dietary beta-carotene was statistically non-significantly positively associated with incidence of BCC, RR: 2.16, 95% $\mathrm{CI}=0.87-5.36$, comparing highest vs. lowest quartiles of intake (McNaughton, 2005).

Beta-carotene in diet was not related to BCC in the EPIC-Norfolk study (RR: 1.06, 95\% CI= 0.84-1.34, for each $1210 \mu \mathrm{~g} /$ day increment, 109 cases), (Davies, 2002).

5.5.1.2.2 Beta-carotene in diet and supplement

Cohort studies

Summary
Three studies (four publications on melanoma, BCC and SCC) were identified in the 2005 SLR and one new study (one publication on melanoma) was identified in the CUP (Table 28).

No meta-analysis was conducted.

Malignant melanoma

Total beta-carotene intake was not associated with melanoma (RR: 1.13, 95\% CI= 0.86-1.49, comparing >9 358.2 vs. $\leq 3515 \mu \mathrm{~g} /$ day in the VITamins And Lifestyle (VITAL) cohort study (519 cases) (Asgari, 2012), and in the Nurses’ Health studies (NHS and NHS II, 414
cases; RR: $1.22,95 \% \mathrm{CI}=0.86-1.74$, comparing ≥ 6000 vs. $<2400 \mu \mathrm{~g} /$ day) (Feskanich, 2003).

Basal cell carcinoma

Beta-carotene intake from diet and supplements was not associated with incidence of BCC (RR: $1.21,95 \% \mathrm{CI}=0.48-3.09$, comparing highest vs. lowest quartiles of intake) in an Australian cohort study (McNaughton, 2005). In the Nurses' Health Study (5 392 cases), the cumulative average dietary intake of beta-carotene was positively associated with incidence of BCC (RR: 1.10, $95 \% \mathrm{CI}=(0.99-1.20)$ for highest vs. lowest quintile, with a statistically significant linear dose-response trend ($\mathrm{P}_{\operatorname{taxa}}=0.02$) (Fung, 2002b).

Squamous cell carcinoma

A statistically non-significant positive associations between total beta-carotene intake and SCC were observed in men in the HPFS (RR: $1.42,95 \%$ CI: $0.93-2.16$, p-trend= $0.88,305$ cases) and women in the NHS (RR: 1.10, 95% CI= $0.79-1.54$, p-trend $=0.31,369$ cases) comparing highest vs. lowest quintile. The pooled summary was RR: $1.21,95 \% \mathrm{CI}=0.94-$ 1.58 (Fung, 2003).

5.5.1.2 Beta-carotene in supplement

Randomised controlled trials

Summary
Four RCTs (seven publications on melanoma, NMSC, BCC and SCC) were identified in the 2005 SLR and no new RCTs were identified in the CUP (Table 28).

In the Physician's Health Study, a randomized, double-blind, placebo-controlled trial with a two-by-two factorial design, male physicians between 40-84 years of age and without history of skin cancer (except NMSC) and cardiovascular disease were assigned to 50 mg betacarotene or beta-carotene placebo on alternate days.

In the Nambour Skin Cancer Prevention Trial, community residents were randomly assigned to daily sunscreen use or daily supplementation with 30 mg of beta-carotene over an average period of 4.5 years. 27% of the subjects had a history of skin cancer.

In the Women's Health Study, a randomised double-blind trial, apparently healthy female health professionals, aged 45 or older without history of cancer (except NMSC) were assigned to 50 mg beta-carotene supplementation on alternate days or placebo over a median duration of 2.1 years.

In the Beta Carotene Trial based in California USA, participants were assigned to 50 mg beta-carotene supplementation daily or placebo over a period of five years. Participants had a history of NMSC (persons with at least 1 BCC or SCC).

Malignant melanoma

After an average of 12.9 years of supplementation in the PHS trial, no effect was observed (RR: $0.90,95 \% \mathrm{CI}=0.60-1.20)($ Cook, 2000).

No effect of beta-carotene supplementation on melanoma risk was observed in the WHS (19 and 21 cases in the treated and placebo groups respectively, p value not reported) (Lee, 1999).

Non-melanoma skin cancer

In the PHS trial, 12 years with beta-carotene supplementation (50 mg every other day) had no effect on the risk of non-melanoma skin cancer (RR: 0.98; 95\% CI=0.92-1.05, 3607 events). There was no evidence of trend for beneficial or adverse effect, and results were similar regardless of smoking status (Frieling, 2000).

No effect of beta-carotene supplementation ($50 \mathrm{mg} /$ day) was observed in the Beta Carotene Trial, California, in people with antecedents of NMSC (RR: 1.04, 95\% CI= 0.89-1.21) (Greenberg, 1990). The relative rates were $1.44,95 \% \mathrm{CI}=0.99-2.09$ in current smokers and $0.97,95 \% \mathrm{CI}=0.82-1.15$ in non-current smokers.

Basal cell carcinoma

In the 2005 SLR, the summary OR based on the three RCTs (Frieling, 2000; Green, 1999; Greenberg, 1990) was 1.00 ($95 \% \mathrm{CI}=0.94-1.07$).

In the PHS trial, beta-carotene supplementation had no effect on BCC (RR: 0.99; 95\% CI= 0.92-1.06) and the relative rates were similar in never smokers (RR: $1.02,95 \%$ CI=0.931.13), current smokers (RR: $1.07,95 \% \mathrm{CI}=0.85-1.35$) and past smokers (RR: $0.93,95 \% \mathrm{CI}=$ 0.84-1.04) (Frieling, 2000).

Squamous cell carcinoma

In the 2005 SLR, the summary OR based on the three RCTs (Frieling, 2000; Green, 1999; Greenberg, 1990) was 1.07 ($95 \% \mathrm{CI}=0.89-1.30$). In the PHS trial (Frieling, 2000), betacarotene supplementation had no effect on SSC (RR: $0.97,95 \% \mathrm{CI}=0.84-1.13$) and the relative rates were similar in never smokers (RR: $0.96,95 \% \mathrm{CI}=0.77-1.20$), past smokers (RR: $0.95,95 \% \mathrm{CI}=0.76-1.19$) and current smokers (RR: $1.08,95 \% \mathrm{CI}=0.69-1.68$).

Cohort studies

Summary
No studies were identified in the 2005 SLR and one study (two publications on melanoma) was identified in the CUP (Table 28).

No meta-analysis was conducted.

Malignant melanoma

In the VITAL cohort study with 556 cases and 5.84 years of follow-up, beta-carotene supplementation use (RR: $0.95,95 \% \mathrm{CI}=0.64-1.40$, comparing current vs. non-users) and levels of supplementation (RR: $1.08,95 \%$ CI $=0.86-1.36$, comparing intake of $>600 \mu \mathrm{~g} / \mathrm{day}$ vs. no use of beta-carotene supplements) were not associated with melanoma (Asgari, 2012). Long-term intake of $\geq 3000 \mu \mathrm{~g} /$ day of beta-carotene from supplements was statistically non-significantly inversely associated with melanoma risk when compared to no use (RR: 0.87, 95\% CI= 0.48-1.56) (VITAL, Asgari, 2009).

Table 27 Beta-carotene in supplement and skin cancer risk. Results of meta-analysis of RCTs published after the 2005 SLR.

Author, Year	Number of studies	Total number of cases	Studies country, area	Outcome	Comparison	RR (95\% CI)	Heterogeneity ($\mathbf{I}^{2}, \mathbf{p}$ value)
Meta-analyses							
Druesne-Pecollo,2010		98	USA, France	Melanoma	Treatment vs. placebo No restriction (all studies)	0.98 (0.65-1.46)	0.22
	2	58			Combined with other antioxidants	1.03 (0.61-1.75)	0.09
	2	73			With doses of 20-30 mg/day	0.81 (0.51-1.27)	0.59
	2	33			Majority of men	0.62 (0.31-1.25)	0.70
	3	65			Majority of women	1.14 (0.68-1.89)	0.07
	4	4447	Australia, USA, UK, France	NMSC	No restriction (all studies)	0.99 (0.93-1.05)	0.52
	2	3870			Alone	0.99 (0.93-1.06)	0.17
	2	577			Combined with other antioxidants	0.98 (0.83-1.15)	0.55
	3	4315			With doses of 20-30 mg/day	0.99 (0.93-1.05)	0.36
	3	4119			Majority of men	0.97 (0.91-1.03)	0.46
	2	395			Majority of women	1.18 (0.97-1.45)	0.53

3	3482	Australia, USA, France	BCC	No restriction	1.00 (0.93-1.07)	0.82
2	3367			Alone	0.99 (0.93-1.06)	0.74
2	3367			With doses of 20-30 $\mathrm{mg} /$ day	0.99 (0.93-1.06)	0.74
2	3230			Majority of men	0.99 (0.92-1.06)	0.45
2	252			Majority of women	1.13 (0.88-1.44)	0.23
3	773		SCC	No restriction	0.99 (0.86-1.14)	0.31
2	760			Alone	1.00 (0.87-1.15)	0.20
2	760			With doses of 20-30 $\mathrm{mg} /$ day	1.00 (0.87-1.15)	0.20
2	701			Majority of men	0.97 (0.84-1.12)	0.77
2	72			Majority of women	1.27 (0.80-2.03)	0.24

Note: Of the four studies included in the NMSC meta-analyses, two studies are included in the CUP review under 5.5.1.2 Beta-carotene supplementation (Green, 1999; Frieling, 2000) and two are included under 5.5.18 Multivitamins supplement (Hercberg, 2007; Heart protection study collaborative group, 2002)

Table 28 Total, circulating or supplemental beta-carotene and skin cancer risk. Main characteristics of identified studies.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
Asgari, 2012 USA	VITAL, Prospective Cohort, Age: 50-76 years, M/W	$\begin{gathered} 519 / \\ 63576 \\ 5.84 \text { years } \end{gathered}$	SEER cancer registry	$\begin{gathered} \text { 120-item FFQ, } \\ \text { Total } \end{gathered}$	Incidence, MM	$\begin{aligned} & >9358.2 \text { vs. } \\ & \leq 3515 \mu \mathrm{~g} / \mathrm{day} \end{aligned}$	$\begin{gathered} 1.13 \text { (0.86-1.49) } \\ \text { Ptrend:0.47 } \end{gathered}$	Age, gender, education, BMI, alcohol, freckles between the ages $10-20, \geq 3$ severe sunburns between ages 10-20, red or blond hair between the ages 10-20, reaction to 1 h in strong sunlight, family history of melanoma, history of NMSC, mole removed, macular degeneration; total and dietary betacarotene also adjusted for energy intake
		527/		Dietary		$\begin{aligned} & \quad>5648.5 \mathrm{vs} . \\ & \leq 2138.8 \mu \mathrm{~g} / \mathrm{day} \end{aligned}$	$\begin{gathered} 1.15(0.87-1.53) \\ \text { Ptrend:0.46 } \end{gathered}$	
		556/		Supplement (includes multivitamin sources)		$>600 \mu \mathrm{~g} / \mathrm{day}$ vs. non-user	$\begin{gathered} 1.08(0.86-1.36) \\ \text { Ptrend:0.36 } \end{gathered}$	
		532/		Individual supplement use		Current vs. nonuser	0.95 (0.64-1.40)	
$\begin{gathered} \text { Asgari, } 2009 \\ \text { USA } \end{gathered}$	VITAL, Prospective Cohort Study, Age: 50-76 M/W	$\begin{gathered} 453 / \\ 69671 \end{gathered}$	SEER cancer registry	Supplement Self- administered questionnaire	Incidence, MM	$\begin{gathered} \geq 3000 \text { vs. }>0- \\ \leq 600 \mu \mathrm{~g} / \text { day }(10- \\ \quad \text { year average }) \end{gathered}$	$\begin{gathered} 0.87(0.48-1.56) \\ \text { Ptrend:0.38 } \end{gathered}$	Age, gender, education, 1^{*} degree family history of melanoma, personal history of NMSC, ever had moles

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
				Beta-carotene was analysed by HPLC using the method of Sowell et al., 1994		Linear trend	1.15 (0.88-1.50)	Age, sex
$\begin{gathered} \text { Dorgan, } 2004 \\ \text { SKI00325 } \\ \text { USA } \end{gathered}$	ISOBCC Trial, Prospective Cohort, Age: 40-75 years, M/W, History $>=2$ BCC	221/ 302 5 years maximum	Dermatological examination at each visit	Serum Beta-carotene was analysed by HPLC	Incidence, BCC	$\begin{gathered} 20.38+(\mathrm{M}) \\ 26.58(\mathrm{~W}) \text { vs. } \\ <10.5(\mathrm{M}) \\ <14.65(\mathrm{~W}) \\ \mu \mathrm{g} / \mathrm{dL} \end{gathered}$	$\begin{gathered} 1.01(0.71-1.44) \\ \text { Ptrend:0.94 } \end{gathered}$	Age, sex, BMI, clinic site, HDL, LDL, number of prior BCCs, skin type, solar damage, treatment group
		$\begin{aligned} & 85 / \\ & 302 \end{aligned}$			SCC		$\begin{gathered} 1.47(0.81-2.68) \\ \text { Ptrend:0.06 } \end{gathered}$	Additionally adjusted for the number of prior SCC
Schaumberg, 2004 SKI00367 USA	PHS, Nested casecontrol within the trial, Age: 40-84 years, M	$\begin{gathered} 1338 / \\ 2676 \\ 12 \text { years } \end{gathered}$	BCC was selfreported and SCC was selfreported and confirmed through pathology reports	Serum beta-carotene was analysed by HPLC	Incidence, NMSC Among subjects assigned to placebo	$\begin{aligned} & \geq 23.29 \mathrm{vs} \\ & \leq 7.28 \mu \mathrm{~g} / \mathrm{dL} \end{aligned}$	$\begin{gathered} 0.97(0.69-1.37) \\ \text { Ptrend:0.84 } \end{gathered}$	Age, alcohol consumption, BMI, exercise, randomised aspirin assignment, smoking habits
		305/			Incidence, NMSC	Treatment (50 mg betacarotene) vs. placebo in subjects with the lowest	$\begin{gathered} 0.88(0.63-1.22) \\ \text { Ptrend:0.33 } \end{gathered}$	
		Cases of BCC and SCC with baseline plasma			BCC		0.87 (0.61-1.24)	
					SCC		0.81 (0.30-2.23)	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
		$\begin{aligned} & \text { beta-carotene } \\ & \leq 7.28 \mu \mathrm{~g} / \mathrm{dL} \text { not } \\ & \text { available } \end{aligned}$				baseline betacarotene concentration, $\leq 7.28 \mu \mathrm{~g} / \mathrm{dL}$		
Feskanich, 2003 SKI00696 USA	NHS and NHSII, Prospective Cohort, Age: 25-77 years, W	$\begin{gathered} 414 / \\ 162078 \end{gathered}$	Medical records	Total FFQ	Incidence, MM	$\begin{aligned} & \geq 6000 \text { vs. } \\ & <2400 \mu \mathrm{~g} / \mathrm{day} \end{aligned}$	$\begin{gathered} 1.22(0.86-1.74) \\ \text { Ptrend:0.96 } \end{gathered}$	Age, follow-up cycle, area of residence, BMI, family history of specific cancer, hair colour, height, menopausal status, number of moles, number of sunburns, oral contraceptive use, parity, postmenopausal hormone use, skin reaction
Fung, 2003 SKI00818 USA	NHS and HPFS pooled	$\begin{gathered} 674 / \\ 129811 \end{gathered}$	Self-report confirmed by medical records	Total FFQ	Incidence, SCC	Q5 vs. Q1	$\begin{gathered} 1.21(0.94-1.58) \\ \text { Ptrend:0.43 } \end{gathered}$	Age, area of residence, area of residence, BMI, beer consumption, liquor, missing FFQ, smoking habits, total energy, wine

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	HPFS, Prospective Cohort, Age: 30-75 years, M/W, male health professionals	$\begin{gathered} 305 / \\ 43867 \\ 10 \text { years max } \end{gathered}$			Men	$8750 \text { vs. } 2186$ $\mu \mathrm{g} /$ day	$\begin{gathered} 1.42(0.93-2.16) \\ \text { Ptrend:0.88 } \end{gathered}$	Childhood sun exposure in swimsuit, eye colour, tendency to burn in childhood
	NHS , Prospective Cohort, Age: 30-75 years, M/W, female nurses	$\begin{gathered} 369 / \\ 85944 \\ 14 \text { years max } \end{gathered}$			Women	$\begin{gathered} 7277 \text { vs. } 2009 \\ \mu \mathrm{~g} / \text { day } \end{gathered}$	$\begin{gathered} 1.10(0.79-1.54) \\ \text { Ptrend:0.31 } \end{gathered}$	Ancestry, childhood sun reaction, childhood tanning ability, hair colour, lifetime blistering sunburn, sun screen use
$\begin{gathered} \text { Davies, } 2002 \\ \text { SKI00989 } \\ \text { UK } \end{gathered}$	EPIC-Norfolk, Nested Case Control, Age: 65 (W), 67.8 (M) years M/W	$\begin{gathered} 109 / \\ 1976 \end{gathered}$	Cancer registry	Dietary Self-reported 7-day food diary	Incidence, BCC	Per $1210 \mu \mathrm{~g} /$ day	1.06 (0.84-1.34)	BMI, hair colour, dietary components
Fung, 2002b SKI01012 USA	NHS, Prospective Cohort, Age: 30-55 years, W,	$\begin{gathered} 5392 / \\ 85836 \\ 8 \text { years } \end{gathered}$	Not stated	Total FFQ (cumulative average intake)	Incidence, BCC	$\begin{gathered} 7277 \text { vs. } 2009 \\ \mu \mathrm{~g} / \mathrm{day} \end{gathered}$	$\begin{gathered} 1.10(0.99-1.20) \\ \text { Ptrend:0.02 } \end{gathered}$	Age, ancestry, area of residence, BMI, beer consumption, childhood sun exposure, energy intake, eye colour,

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	female nurses							hair colour, liquor, missing FFQ, red wine, smoking habits, tendency to burn in childhood, white wine
Cook, 2000 USA	PHS, Randomised Control Trial, Age: 40-84 years, M	$\begin{aligned} & 77 \text { (placebo), } 68 \\ & \text { (treatment)/ } \\ & 22071 \\ & 12.9 \text { years } \end{aligned}$	Self-report confirmed by medical records	Supplementation with 50 mg betacarotene or placebo on alternate days	Incidence, MM	Treatment vs. placebo	0.90 (0.60-1.20)	Age, randomization assignment in the aspirin component of the trial
Frieling, 2000 SKI01657 USA	PHS, Randomised Control Trial, Age: 40-84 years, M	$\begin{gathered} 1821 \text { (placebo), } \\ 1786 \text { (treatment) } \\ / 10943 \\ \text { (placebo), } 10941 \\ \text { (treatment) } \end{gathered}$	Self-report confirmed by medical records	Supplementation with 50 mg betacarotene or placebo on alternate days	Incidence, NMSC	Treatment vs. placebo	0.98 (0.92-1.05)	Age, randomization assignment in the aspirin component of the trial
		871 (placebo), 875 (treatment)			Never smokers		1.02 (0.93-1.12)	
		778 (placebo), 729 (treatment)/			Past smokers		0.93 (0.84-1.03)	
		166 (placebo), 178 (treatment)/			Current smokers		1.06 (0.86-1.30)	
		1598 (placebo), 1574 (treatment)			BCC		0.99 (0.92-1.06)	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
		50 (placebo), 63 (treatment)/			Tumour-based incidence		1.19 (0.89-1.41)	
$\begin{gathered} \text { Lee, } 1999 \\ \text { SKI23382 } \\ \text { USA } \end{gathered}$	WHS, Randomised Control Trial, Age: 45- years, W	21 (placebo), 19 (treatment)/ 2.1 years treatment and additional 2 years of followup	Self-report confirmed by medical records	Supplementation with 50 mg betacarotene or placebo on alternate days	Incidence, MM	Treatment vs. placebo	No statistically significant difference	Age, treatment group
Hsueh, 1997 SKI02322 Taiwan	Taiwan 19891992, Nested Case Control, Age: 30- years, M/W	$\begin{aligned} & 16 / \\ & 77 \end{aligned}$	Clinical diagnoses confirmed by biopsy	Serum beta-carotene measured using HPLC	Incidence, arsenicinduced skin cancer	$\begin{gathered} >0.18 \text { vs. } \leq 0.14 \\ \mu \mathrm{~g} / \mathrm{ml} \end{gathered}$	0.01 (0.00-0.37)	Age, sex, alcohol consumption, cumulative arsenic exposure, serum cholesterol and triglyceride levels, smoking habits
$\begin{gathered} \text { Karagas, } 1997 \\ \text { SKI02443 } \\ \text { USA } \end{gathered}$	SKICAP, Nested Case Control, Age: 35-84 years, M/W, $\text { History > } 1 \text { BCC }$ or SCC	$\begin{gathered} 117 / \\ 337 \\ 5 \text { years } \\ \hline \\ 129 / \\ 379 \end{gathered}$	Questionnaire every 4 months and annual dermatological examination	Plasma betacarotene measured using HPLC	Incidence, first SCC Any SCC	$\begin{gathered} >265 \text { vs. } \leq 100 \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$		Age, sex, study centre (matching factors), adjusted for smoking habits
Hennekens, 1996 SKI02632	PHS, Randomised	$\begin{gathered} 73 \text { (placebo), } 64 \\ \text { (treatment)/ } \end{gathered}$	Self-report confirmed by	Supplementation with 50 mg beta-	Incidence, MM	Treatment vs. placebo	No statistically significant	-

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
USA	Control Trial, Age: 40-84 years, M	$\begin{gathered} 11035 \text { (placebo), } \\ 11036 \\ \text { (treatment) } \\ 12 \text { years } \end{gathered}$	medical records	carotene or placebo on alternate days			difference	
$\begin{gathered} \text { Breslow, } 1995 \\ \text { SKI02677 } \\ \text { USA } \end{gathered}$	Maryland USA 1974-1975, Nested Case Control, Age: 18- years, M/W	30/90	Cancer registry	Serum beta-carotene measured using HPLC	Incidence, MM	Q 3 vs. Q 1	0.80 (0.20-2.30)	Matched by age, sex, race; adjustment for smoking, education, hours since the last meal did not substantially change the results
		32/96			BCC		$\begin{gathered} 1.30(0.40-4.00) \\ \text { Ptrend:0.72 } \end{gathered}$	
		37/111			SCC		$\begin{gathered} 1.40(0.50-4.00) \\ \text { P-trend:NA } \end{gathered}$	
$\begin{gathered} \text { Comstock, } 1991 \\ \text { SKI03597 } \\ \text { USA } \end{gathered}$	Maryland, USA 1974, Case Cohort, Age: 18- years, M/W	$\begin{gathered} 20 / \\ 60 \end{gathered}$	Cancer registry	Serum beta-carotene measured using HPLC	Incidence, MM	Low vs. high	$\begin{gathered} 1.90 \\ \text { Ptrend:0.16 } \end{gathered}$	Matched by age, race, sex, month blood was donated, time between blood drawing and the previous meal
		$\begin{gathered} 21 / \\ 63 \end{gathered}$			BCC		$\begin{gathered} 1.10 \\ \text { Ptrend:0.24 } \end{gathered}$	
Knekt, 1991 SKI03576 Finland	FMCHES, Nested Case Control, Age: 15-99 years, M/W	$\begin{aligned} & 10 / \\ & 28 \end{aligned}$	Finnish cancer registry	Serum beta-carotene measured using HPLC	Incidence, MM	Per one standard deviation increase	$\begin{gathered} 0.03 \\ \text { Ptrend:<0.01 } \end{gathered}$	Matched by age, sex, municipality
Greenberg, 1990 SKI03685	Beta Carotene Trial 1983-89,	340 (placebo), 362 (treatment)/	Annual skin examinations,	Supplementation with 50 mg of beta-	Incidence, NMSC	Treatment vs. placebo	1.04 (0.89-1.21)	Age, sex, age at first skin cancer,

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
USA	Randomised Control Trial, Age: -85 years, M/W History $>=1$ BCC or SCC	892 (placebo), 913 (treatment) 5 year intervention	dermatology reports	carotene or placebo daily for five years				centre location, plasma beta carotene, plasma retinol, previous skin cancer, skin type, smoking habits
		317 (placebo), 334 (treatment)/			Had at least one new BCC		1.04 (0.89-1.21)	
		$\begin{gathered} 59 \text { (placebo), } 73 \\ \text { (treatment)/ } \end{gathered}$			SCC		1.22 (0.87-1.72)	
					Incidence, NMSC women		0.94 (0.68-1.31)	
					Men		1.06 (0.90-1.26)	
					Incidence, NMSC Non-smokers		0.97 (0.82-1.15)	
					Smokers		1.44 (0.99-2.09)	
Knekt, 1990a SKI22124 Finland	FMCHES, Nested Case Control, Age: 15-99 years, M/W	$\begin{aligned} & 38 / \\ & 110 \end{aligned}$	Finnish cancer registry	Serum beta-carotene measured using HPLC	Incidence, BCC, Men, after excluding first two years of follow-up	Lowest vs. higher quintiles	3.10 (0.90-10.60)	Smoking habits

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
		29/81			Women		0.40 (0.10-1.70)	
Wald, 1988 SKI22138 UK	BUPA study, Nested Case Control, Age: 35-64 years, M	$\begin{aligned} & 56 / \\ & 163 \end{aligned}$	National Health Service records	Serum beta-carotene measured using HPLC	Incidence, skin cancer	(mean exposure)	-	-

5.5.2.3 Lycopene in diet

Cohort studies

Summary

Three studies (two publications on skin cancer, melanoma and BCC) were identified in the 2005 SLR and one new study (two publications on melanoma, SCC and BCC) was identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

In the VITAL cohort study (527 cases), no association was reported (RR: $1.15,95 \% \mathrm{CI}=$ $0.86-1.53$, comparing >8680.9 vs. $\leq 3163.6 \mu \mathrm{~g} /$ day) (Asgari, 2012). In the NHS and NHS II, no association was found (RR not shown in the publication) (Feskanich, 2003).

Basal cell carcinoma

In a community based prospective study on skin cancer in Australia, lycopene in diet was not related to $\mathrm{BCC}(\mathrm{RR}=0.98,95 \% \mathrm{CI}=0.61-1.60$, comparing 6744 vs. $1945 \mu \mathrm{~g} / \mathrm{day}$) (Heinen, 2007). The analysis was tumour-based (321 BCC tumours in 149 participants). In analysis stratified by NMSC history, the RR was $0.82,95 \% \mathrm{CI}=0.45-1.50$ in people with skin cancer history, and $1.20,95 \% \mathrm{CI}=0.53-2.80$ in those without previous NMSC (Heinen, 2007).

Similar results were observed in a previous nested case-control study in the same cohort. The RR estimate in the highest compared to the lowest quartile of intake was $0.64,95 \% \mathrm{CI}=0.26$ 1.56 (McNaughton, 2005).

Squamous cell carcinoma

In a community based prospective study on skin cancer in Australia, lycopene in diet was not related to SCC risk ($\mathrm{RR}=0.84,95 \% \mathrm{CI}=0.48-1.50$, comparing 6744 vs. $1945 \mu \mathrm{~g} / \mathrm{day}$) (Heinen, 2007). The analysis was tumour-based. In analysis stratified by NMSC history, the RR was $0.78,95 \% \mathrm{CI}=0.42-1.50$ in people with skin cancer history, and $1.10,95 \% \mathrm{CI}=0.35$ 3.60 in those without previous NMSC (Heinen, 2007).

Table 29 Lycopene in diet and skin cancer risk. Main characteristics of identified studies.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{aligned} & \text { RR }(95 \% \text { CI) } \\ & \text { Ptrend } \end{aligned}$	Adjustment factors
$\begin{gathered} \text { Asgari, } 2012 \\ \text { USA } \end{gathered}$	VITAL, Prospective Cohort, Age: 50-76 years, M/W	$\begin{gathered} 527 / \\ 69635 \\ 5.84 \text { years } \end{gathered}$	SEER cancer registry	$\begin{gathered} \text { 120-item } \\ \text { FFQ } \end{gathered}$	Incidence, MM	$\begin{aligned} & >8680.9 \text { vs. } \\ & \leq 3163.6 \mu \mathrm{~g} / \mathrm{day} \end{aligned}$	$\begin{gathered} 1.15 \text { (0.86-1.53) } \\ \text { Ptrend:0.31 } \end{gathered}$	Age, gender, education, BMI, alcohol, freckles between the ages $10-20, \geq 3$ severe sunburns between ages $10-20$, red or blond hair between the ages 10 20 , reaction to 1 h in strong sunlight, family history of melanoma, history of NMSC, mole removed, macular degeneration, energy intake
Heinen, 2007 Australia	NSCS, Follow-up of a trial on skin cancer, Age: avg. between 53-65, M/W	$149(321$ tumours)/ 1001 8 years 658 participants 311 participants	Questionnaires, confirmed through histological reports	129-item semiquantitative FFQ	Tumour-based incidence BCC No skin cancer history With skin cancer history	$\begin{gathered} 6744 \text { vs. } 1945 \\ \mu \mathrm{~g} / \mathrm{day} \end{gathered}$	0.98 (0.61-1.60) Ptrend:0.94 $1.20(0.53-2.80)$ Ptrend:0.64 $0.82(0.45-1.50)$ Ptrend:0.52	Age, sex, energy intake, skin colour, elastosis of the neck, number of painful sunburns, smoking, treatment allocation, use of dietary supplements, history of skin cancer
		116 (221 tumours 646			Tumour-based incidence, SCC No skin cancer		$0.84(0.48-1.50)$ Ptrend: 0.56	Additionally adjusted for tanning ability of skin

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
		participants			history		Ptrend:0.87	
		294 participants			With skin cancer history		$\begin{gathered} 0.78(0.42-1.50) \\ \text { Ptrend:0.45 } \end{gathered}$	
McNaughton, 2005 SKI22177	NSCS, Nested Case Control, Age: 55 years	$\begin{aligned} & 90 / \\ & 180 \end{aligned}$	Through participants, their doctors and pathology	129-item semiquantitative	Incidence, BCC	Q 4 vs. Q 1	0.64 (0.26-1.56)	Age, sex, supplement use, total energy intake
Australia	M/W		laboratories			Linear trend	0.85 (0.65-1.13)	
$\begin{gathered} \text { Feskanich, } \\ 2003 \\ \text { SKI00696 } \\ \text { USA } \end{gathered}$	NHS and NHSII, Prospective Cohort, Age: 25-77 years, W	$\begin{gathered} 414 / \\ 162078 \end{gathered}$	Medical records	FFQ	Incidence, MM	-	-	-

5.5.2.5 Lutein and zeaxanthin in diet

Cohort studies

Summary

Three studies (two publications on skin cancer, melanoma and BCC) were identified in the 2005 SLR and one new study (two publications on melanoma, BCC and SCC) was identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

No association was reported in the VITAL cohort study (527 cases) (RR: 1.27, $95 \% \mathrm{CI}=$ $0.95-1.70$, comparing $>3,683.8$ vs. $\leq 1449.2 \mu \mathrm{~g} /$ day of lutein and zeaxanthin (Asgari, 2012). No association was found in the NHS and NHS II (RR nor shown in the publication) (Feskanich, 2003).

Basal cell carcinoma

In a community based prospective study on skin cancer in Australia, lutein and zeaxanthin in diet was not related to SCC risk (RR=1.10, 95\% CI= 0.71-1.80, comparing 2945 vs. 1974 $\mu \mathrm{g} / \mathrm{day}$) (Heinen, 2007). The analysis was tumour-based (321 BCC tumours in 149 participants). In analysis stratified by NMSC history, the RR was $1.40,95 \% \mathrm{CI}=0.65-2.90$ in people with skin cancer history, and $0.87,95 \% \mathrm{CI}=0.48-1.60$ in those without previous NMSC (Heinen, 2007).

Similar results were observed in a previous nested case-control study in the same cohort. The RR estimate of first incident BCC in the highest compared to the lowest quartile of intake was $1.65,95 \% \mathrm{CI}=0.69-3.95$ (McNaughton, 2005).

Squamous cell carcinoma

No association was reported in the Australian cohort study (RR: $0.65,95 \% \mathrm{CI}=0.38-1.1$, comparing 2945 vs. $1974 \mu \mathrm{~g} / \mathrm{day}$, 221 tumours in 116 participants) (Heinen, 2007). In analysis stratified by NMSC history, the RR was $0.94,95 \% \mathrm{CI}=0.24-3.60$ in those without skin cancer history, and RR: $0.47,95 \% \mathrm{CI}=0.25-0.89$ in those with skin cancer history at baseline (Heinen, 2007).

Table 30 Lutein and zeaxanthin in diet and skin cancer risk. Main characteristics of identified studies.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR (95\%CI) } \\ \text { Ptrend } \end{gathered}$	Adjustment factors
$\begin{gathered} \text { Asgari, } 2012 \\ \text { USA } \end{gathered}$	VITAL, Prospective Cohort, Age: 50-76 years, M/W	$\begin{gathered} 527 / \\ 69635 \\ 5.84 \text { years } \end{gathered}$	SEER cancer registry	$\begin{aligned} & \text { 120-item } \\ & \text { FFQ } \end{aligned}$	Incidence, MM	$\begin{gathered} >3683.8 \text { vs. } \\ \leq 1449.2 \mu \mathrm{~g} / \text { day } \end{gathered}$	$\begin{gathered} 1.27(0.95-1.70) \\ \text { Ptrend: } 0.07 \end{gathered}$	Age, gender, education, BMI, alcohol, freckles between the ages $10-20, \geq 3$ severe sunburns between ages $10-20$, red or blond hair between the ages 10 20 , reaction to 1 h in strong sunlight, family history of melanoma, history of NMSC, mole removed, macular degeneration, energy intake
Heinen, 2007 Australia	NSCS, Follow-up of a trial on skin cancer, Age: avg. between 53-65, M/W	$149(321$ tumours $) /$ 1001 8 years 658 participants	Questionnaires, confirmed through histological reports	$\begin{gathered} 129 \text {-item } \\ \text { semi- } \\ \text { quantitative } \\ \text { FFQ } \end{gathered}$	Tumour-based incidence BCC No skin cancer history	$\begin{gathered} 2945 \text { vs. } 1974 \\ \mu \mathrm{~g} / \text { day } \end{gathered}$	$1.1(0.71-1.8)$ Ptrend: 0.61 $1.4(0.65-2.9)$ Ptrend: 0.40	Age, sex, energy intake, skin colour, elastosis of the neck, number of painful sunburns, smoking, treatment allocation, use of dietary supplements, history of skin cancer
		$\begin{gathered} 311 \\ \text { participants } \end{gathered}$			With skin cancer history		$\begin{gathered} 0.87(0.48-1.6) \\ \text { Ptrend: } 0.67 \end{gathered}$	
		$\begin{aligned} & 116 \text { (221 } \\ & \text { tumours) } \end{aligned}$			Tumour-based incidence, SCC		$\begin{gathered} 0.65(0.38-1.1) \\ \text { Ptrend: } 0.13 \end{gathered}$	Additionally adjusted for tanning ability of skin
		646 participants			No skin cancer history		$\begin{gathered} 0.94(0.24-3.60) \\ \text { Ptrend: } 0.99 \end{gathered}$	
		$\begin{gathered} 294 \\ \text { participants } \end{gathered}$			With skin cancer history		$\begin{gathered} 0.47(0.25-0.89) \\ \text { Ptrend: } 0.02 \end{gathered}$	
McNaughton,	NSCS,	90/	Through		Incidence,	Q 4 vs. Q 1	1.65 (0.69-3.95)	Age, sex, supplement use,

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{aligned} & \text { RR }(95 \% \mathrm{CI}) \\ & \text { Ptrend } \end{aligned}$	Adjustment factors
$\begin{gathered} 2005 \\ \text { SKI22177 } \\ \text { Australia } \end{gathered}$	Nested Case Control, Age: 55 years M/W	180	participants, their doctors and pathology laboratories	129-item semiquantitative FFQ	BCC			total energy intake
						Linear trend	1.25 (0.95-1.65)	
Feskanich, 2003 SKI00696 USA	NHS and NHSII, Prospective Cohort, Age: 25-77 years, W	$\begin{gathered} 414 / \\ 162078 \end{gathered}$	Medical records	FFQ	Incidence, MM	-	-	-

5.5.10 Vitamin D in blood

Cohort studies

Overall summary
Eight publications from 11 studies that examined 25 -hydroxyvitamin D in blood were identified. These included a pooled study of three Danish cohorts (Monica10, Inter99, and Health2006) (Skaaby, 2014). All were new studies identified during the CUP.

Dose-response meta-analyses on circulating vitamin D and melanoma, non-melanoma skin cancer (NMSC), basal cell carcinoma (BCC) and squamous cell carcinoma (SCC) were conducted.

Table 31 Vitamin D in blood and skin cancer risk. Number of studies in the CUP SLR.

	Number
Studies identified	11 (8 publications)
Studies included in forest plot of highest compared with lowest exposure	6 (4 publications) melanoma risk
	6 (4 publications) NMSC risk
	5 (4 publications) BCC
	4 (3 publications) SCC risk
Studies included in linear dose-response meta-	6 (4 publications) melanoma risk
analysis	6 (4 publications) NMSC risk
	4 (3 publications) BCC
	3 (2 publications) SCC risk
Studies included in non-linear dose-response meta-	
analysis	Not enough studies

Skin cancer

Summary
Main results:
The six studies (4 publications) identified on melanoma and NMSC were included in the dose-response meta-analysis, and 4 out of 5 studies (4 publications) on BCC, and 3 out of 4 studies (3 publications) on SCC. The tests for publication bias were not conducted and funnel plots are not shown due to low number of studies contributing relative risks estimates for each cancer site.

Malignant melanoma

Circulating vitamin D was statistically significantly positively associated with melanoma risk (RR: $1.61,95 \% \mathrm{CI}=1.01-2.58$). There was statistical significant evidence of heterogeneity.

Visual inspection of the forest plot indicates that the inconsistency is mainly driven by one study from Denmark (Afzal, 2013) that reported a positive association.

There was no evidence of difference of association by sex (Skaaby, 2014; Afzal, 2013).
Sensitivity analyses:
The positive association was no longer statistically significant when each study was excluded in turn in influence analysis.

Non-melanoma skin cancer

Circulating vitamin D was statistically non-significantly positively associated with NMSC risk (RR: $1.23,95 \% \mathrm{CI}=0.91-1.67$). High and statistically significant heterogeneity was observed. Visual inspection of the forest plot showns that only one study in elderly men showed a statistically significant inverse association (Tang, 2010). In this study, NMSC cases were ascertained by self-report and not confirmed by histology. In influence analysis, the association became statistically significant and positive when this study was excluded from the analysis (RR: 1.42, 95\% CI= 1.09-1.86).

The pooled analysis of three Danish cohorts was a study on serum 25-Hydroxyvitamin-D levels and risk of different cancers. The only statistically significant positive association with cancer observed in the study was for NMSC (Skaaby, 2014) and it was statistically nonsignificant in participants with $\mathrm{BMI}<25 \mathrm{~kg} / \mathrm{m}^{2}$.

Stratified analyses were not conducted due to low number of studies. In the pooled analysis (Skaaby, 2014), similar positive associations were reported in men (RR: $1.04,95 \% \mathrm{CI}=0.90-$ 1.21) and women (RR: 1.07, 95\% CI= 0.93-1.23).

Basal cell carcinoma

Circulating vitamin D was statistically significantly positively associated with BCC (RR: $1.40,95 \% \mathrm{CI}=1.19-1.66$). Moderate heterogeneity was observed. In influence analysis, the association remained statistically significant when each study was excluded in turn from the analysis.

One study excluded from the dose-response meta-analysis reported a marginally positive association (RR: $1.7,95 \% \mathrm{CI}=1.00-2.9$, comparing $\geq 15 \mathrm{vs} . \leq 14 \mathrm{ng} / \mathrm{ml}$) (Eide, 2011).

Squamous cell carcinoma

Circulating vitamin D was positively but statistically non-significantly associated with SCC risk (RR: $1.57,95 \% \mathrm{CI}=0.64-3.88$). High and statistically significant heterogeneity was observed.

One study excluded from the dose-response meta-analysis reported statistically nonsignificant positive association (RR: 1.7, 95% CI= $0.7-1.40$, comparing ≥ 15 vs. $\leq 14 \mathrm{ng} / \mathrm{ml}$) (Eide, 2011).

Nonlinear dose-response meta-analysis:
Nonlinear dose-response meta-analyses were not conducted due to low number of studies with adequate data.

Study quality:
Two studies originated from clinical trials. The Australian study originated from a skin cancer prevention trial of daily sunscreen use and beta-carotene supplementation (van der Pols, 2013). Vitamin D status was not associated with allocation to sunscreen and betacarotene treatment groups in the trial. The ATBC was a randomized controlled trial of alphatocopherol or beta-carotene investigating incidence of cancer in male smokers (Major, 2012). Supplemental vitamin D intakes were minimal among the ATBC Study participants and blood levels were relatively low compared to US populations.

The level of adjustment for skin type and sunlight exposure varied between the studies. Only two studies adjusted for some measure of skin sensitivity to sunlight and sunlight exposure (van der Pols, 2013; Liang, 2012); two studies adjusted for season (Skaaby, 2014; Afzal, 2013); one study adjusted for season of blood draw and outdoor walking activity (Tang, 2010); one study adjusted for sun exposure surrogates (Asgari, 2010), one study adjusted for propensity to sunburn (Major, 2012). One study was minimally adjusted for age and sex (Eide, 2011).

In one study (Tang, 2010) an inverse asociation of vitamin D status and NMSC was observed. The study was in highly educated men of 65 years of age or more (Tang, 2010). Cases of NMSC were ascertained by subject self-report; this is the only study in the review in which skin cancer was not confirmed by histology.

Several studies provided some evidence that the increased risk of skin cancers with increasing levels of circulating vitamin D might be explained by higher levels of vitamin D with higher UV exposure. In Afzal, 2013, the association was stronger for melanoma in sunexposed sites (head and extremities, 40 cases) (RR per $10 \mathrm{nmol} / \mathrm{l}$ was $1.58 ; 95 \%$ CI: $1.25-$ 2.00) whereas it was weaker (RR: $1.24 ; 95 \% \mathrm{CI}: 0.93-1.66$) for relatively unexposed sites (trunk and other sites, 38 cases). Increasing levels of plasma $25-\mathrm{OH}-\mathrm{vitD}$ were associated with decreasing BMI, increased intensity of leisure-time activity, and with regular cycling or running. In the Australian study (van der Pols, 2013), vitamin D status was associated with indicators of UV exposure (longer time spent outdoors in the 6 months preceding blood collection and during follow-up). However, in a study in white men who sought osteoporosis or low-bone-density-related advice from 1997 to 2001 in the HFHS outpatient clinic, there was a statistically significant (positive) association of higher vitamin D status and NMSC that was of similar magnitude for the cancers in the less UV exposed body sites (Eide, 2011).

Table 32 Vitamin D in blood and skin cancer risk. Summary of the linear dose-response meta-analysis in the 2005 SLR* and 2016 CUP.

	CUP	
Increment unit used	$30 \mathrm{nmol} / \mathrm{l}$	
	Malignant melanoma	Non-melanoma skin cancer
Studies (n)	6	6
Cases	242	1377
RR (95\%CI)	$1.61(1.01-2.58)$	$1.23(0.91-1.67)$
Heterogeneity (I I^{2}, p-value)	$71 \%, 0.02$	$91 \%,<0.0001$
P value Egger test	-	-
	Basal cell carcinoma	Squamous cell carcinoma
Studies (n)	4	3
Cases	1030	251
RR (95\%CI)	$1.40(1.19-1.66)$	$1.57(0.64-3.88)$
Heterogeneity (I2, p-value)	$43 \%, 0.15$	$88 \%,<0.0001$
P value Egger test	-	-

*No studies were identified in the 2005 SLR.

Table 33 Vitamin D in blood and skin cancer risk. Results of meta-analyses of prospective studies published after the 2005 SLR.

Author, Year	Number of studies	Total number of cases	Studies country, area	Outcome	Comparison	RR (95\%CI)	Heterogeneity ($\mathbf{I}^{2}, \mathbf{p}$ value)
Meta-analyses							
Caini, 2014	3 cohort, 1 case-control study	392	Germany, Finland, Denmark, Australia	Cutaneous melanoma	Highest vs. lowest	1.46 (0.60-3.53)	54\%
	2 cohort studies	768	USA, Denmark	NMSC		1.64 (1.02-2.65)	81\%
	5 cohort studies	1221	USA, Australia	BCC		1.82 (1.38-2.40)	0\%
	4 cohort studies	328	USA,	SCC		1.68 (0.44-6.39)	81\%

Table 34 Vitamin D in blood and skin cancer risk. Main characteristics of studies included in the linear dose-response meta-analysis.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
Skaaby, 2014 SKI23412 Denmark	Pooled study: Monica10, Inter99, Health2006,	NMSC 369; Cutaneous melanoma 55/ 12204 11.3 years	Cancer registry	IDS-SYS 25- Hydroxy Vitamin D method (Monica10); HPLC (Inter99); Cobas e411(Health 2006)	Incidence,	per $10 \mathrm{nmol} / \mathrm{l}$	1.06 (1.02-1.10)		
					$\begin{gathered} \text { NMSC } \\ \text { All } \end{gathered}$	Q 4 vs. Q 1	1.43 (1.05-1.93)	Adjusted for study, sex,	
					Men	per $10 \mathrm{nmol} / \mathrm{l}$	1.06 (1.00-1.12)	education, season	
					Women	per $10 \mathrm{nmol} / \mathrm{l}$	1.06 (1.00-1.12)	blood was drawn,	RR rescaled to
	Age: 18-71 years, M/W				Incidence,	per $10 \mathrm{nmol} / \mathrm{l}$	1.06 (0.95-1.17)	physical activity,	increment
					All	Q 4 vs. Q 1	1.18 (0.56-2.48)	alcohol intake,	
					Men	per $10 \mathrm{nmol} / \mathrm{l}$	1.04 (0.90-1.21)		
					Women	per $10 \mathrm{nmol} / \mathrm{l}$	1.07 (0.93-1.23)		
$\begin{gathered} \text { Afzal, } 2013 \\ \text { SKI23413 } \\ \text { Denmark } \end{gathered}$	CCHS, Prospective Cohort, Age: 20-100 years, M/W	$\begin{gathered} 590 / \\ 10060 \\ 20.5 \text { years } \end{gathered}$	Danish cancer registry	DiaSorin LIAISON $25(\mathrm{OH})$ vitamin D TOTAL assay	Incidence, NMSC	$\begin{gathered} \geq 50 \text { vs. } \leq 25 \\ \text { nmol/l } \end{gathered}$	5.04 (2.78-9.16)	Age, sex, BMI, income,	
						$\begin{gathered} \geq 100 \text { vs. } \leq 25 \\ \mathrm{nmol} / \mathrm{l} \end{gathered}$	$\begin{gathered} 5.28 \\ (1.66-16.80) \end{gathered}$	occupational physical activity,	
						per $10 \mathrm{nmol} / \mathrm{l}$	1.23 (1.14-1.32)	blood draw,	RR rescaled to
		78/				$\begin{gathered} \geq 50 \text { vs. } \leq 25 \\ \text { nmol/l } \end{gathered}$	$\begin{gathered} 4.72(0.96- \\ 23.30) \end{gathered}$	cumulative tobacco consumption,	$30 \mathrm{nmol} / \mathrm{l}$ increment
					Incidence, MM	$\begin{gathered} \geq 100 \text { vs. } \leq 25 \\ \mathrm{nmol} / \mathrm{l} \end{gathered}$	$\begin{gathered} 9.58 \\ (2.37-38.70) \end{gathered}$	physical intensity of leisure-time	
						per $10 \mathrm{nmol} / \mathrm{l}$	1.45 (1.22-1.73)	activities, running and cycling habits	
van der Pols,	NSCS,	$300 \mathrm{BCC} ; 176$	Questionnaires	LIAISON	Incidence,	per $50 \mathrm{nmol} / 1$	1.35 (0.94-1.93)	Age, sex,	RR rescaled to

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
2013 SKI23414 Australia	Prospective analysis in adults who had participated in a skin cancer prevention trial (1992-1996) of daily sunscreen use and betacarotene supplementation Age: 54 years, M/W	$\begin{gathered} \text { SCC; } 17 \\ \text { melanoma/ } \\ 1191 \\ 11 \text { years } \end{gathered}$	and skin examination with histological confirmation (100\%)	$\begin{aligned} & 25(\mathrm{OH}) \mathrm{D} \\ & \text { assay } \end{aligned}$	BCC	$\begin{gathered} \geq 75 \text { vs. } \leq 74 \\ \text { nmol/l } \end{gathered}$	1.51 (1.10-2.07)	propensity to sunburn, skin colour, treatment allocation, elastosis neck, family history of skin cancer, freckling back, personal history of skin cancer before 1996, usual time spent outdoors	$30 \mathrm{nmol} / \mathrm{l}$ increment
						$\begin{gathered} \geq 50 \text { vs. } \leq 49 \\ \mathrm{nmol} / \mathrm{l} \end{gathered}$	1.38 (0.95-2.00)		
						$\begin{gathered} \geq 75 \text { vs. }<50 \\ \mathrm{nmol} / \mathrm{l} \end{gathered}$	1.74 (1.13-2.67)		
					Incidence, SCC	per $50 \mathrm{nmol} / 1$	0.68 (0.42-1.11)		
						$\begin{gathered} \geq 75 \text { vs. } \leq 74 \\ \text { nmol/l } \end{gathered}$	0.67 (0.44-1.03)		
						$\begin{gathered} \geq 50 \text { vs. } \leq 49 \\ \text { nmol/l } \end{gathered}$	0.78 (0.50-1.23)		
						$\begin{gathered} \geq 75 \text { vs. }<50 \\ \text { nmol/l } \end{gathered}$	0.61 (0.35-1.06)		
					Incidence, MM	$\begin{gathered} \geq 75 \text { vs. } \leq 74 \\ \text { nmol/l } \end{gathered}$	2.71 (0.98-7.48)		
						per $50 \mathrm{nmol} / \mathrm{l}$	2.70 (0.83-8.77)		
						$\begin{gathered} \geq 50 \text { vs. } \leq 49 \\ \mathrm{nmol} / \mathrm{l} \end{gathered}$	1.53 (0.42-5.56)		
						$\begin{gathered} \geq 75 \text { vs. } 50-74 \\ \text { nmol/l } \end{gathered}$	$\begin{gathered} 2.75(0.68- \\ 11.17) \end{gathered}$		
$\begin{gathered} \text { Liang, } 2012 \\ \text { SKI23415 } \\ \text { USA } \end{gathered}$	NHS and NHS II, Nested Case	$\begin{gathered} 510 / \\ 4056 \text { controls } \end{gathered}$	Biennial follow-up questionnaires	Radioimmunoassay or chemiluminescence	Incidence, BCC NHS and NHS II	Q 4 vs. Q 1	$\begin{aligned} & 2.07(1.52-2.80) \\ & \text { Ptrend:<0.0001 } \end{aligned}$	Age at blood collection, cohort, hair colour,	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{aligned} & \text { RR }(95 \% \mathrm{CI}) \\ & \quad \text { Ptrend } \end{aligned}$	Adjustment factors	Missing data derived for analyses
	Control, W	$\begin{gathered} 387 / \\ 1641 \text { controls } \end{gathered}$	and medical records	immunoassay	NHS	$\begin{gathered} \geq 34.3 \text { vs. } \leq 20.4 \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$	$\begin{gathered} 2.28(1.58-3.29) \\ \text { Ptrend:<0.0001 } \end{gathered}$	laboratory batch, number of sunburns, propensity to sunburn, season of blood draw, UVB flux, NHS and NHS II combined adjusted for cohort	$\mathrm{ng} / \mathrm{ml}$ converted to nmol/l, midpoints of exposure quantiles
		$\begin{gathered} 123 / \\ 2415 \text { controls } \end{gathered}$			NHS II	$\begin{gathered} \geq 31.5 \text { vs. } \leq 19.6 \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$	$\begin{gathered} 1.93(1.10-3.37) \\ \text { Ptrend:0.01 } \end{gathered}$		
		$\begin{gathered} 281 / \\ 2119 \text { controls } \end{gathered}$			NHS and NHS II combined, spring and fall	$\begin{gathered} \geq 34.3 \text { vs. } \leq 20.4 \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$	$\begin{gathered} 2.97(1.90-4.63) \\ \text { Ptrend:<0.0001 } \end{gathered}$		
		$\begin{gathered} 158 / \\ 954 \text { controls } \end{gathered}$			NHS and NHS II combined, summer	$\begin{gathered} \geq 34.3 \text { vs. } \leq 20.4 \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$	$\begin{gathered} 0.93 \text { (0.51-1.71) } \\ \text { Ptrend:0.81 } \end{gathered}$		
		145/ 965 controls			NHS and NHS II combined, winter	$\begin{gathered} \geq 34.3 \text { vs. } \leq 20.4 \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$	$\begin{gathered} 2.53(1.36-4.72) \\ \text { Ptrend:0.006 } \end{gathered}$		
		75/ 4056 controls			Incidence, SCC NHS and NHS II combined	$\begin{gathered} \geq 31.5 \text { vs. } \leq 19.6 \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$	$\begin{gathered} 3.77(1.70-8.36) \\ \text { Ptrend:0.0002 } \end{gathered}$		
		$67 /$ 1641 controls			NHS	$\begin{gathered} \geq 34.3 \text { vs. } \leq 20.4 \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$	$\begin{gathered} 3.96(1.68-9.34) \\ \text { Ptrend:0.0004 } \end{gathered}$		
		$\begin{gathered} 8 / \\ 2415 \text { controls } \end{gathered}$			NHS II	$\begin{gathered} \geq 31.5 \mathrm{vs} . \leq 19.6 \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$	$\begin{gathered} 4.95(0.41- \\ 59.28) \\ \text { Ptrend:0.15 } \end{gathered}$		
$\begin{gathered} \text { Major, } 2012 \\ \text { SKI23417 } \\ \text { Finland } \end{gathered}$	ATBC, Nested Case Control,	$92 /$ 276 controls 18.2 years	Finnish cancer registry	LIAISON 25-OH Vitamin D Total Assay	Incidence, MM	$\begin{gathered} \geq 50 \text { vs. } \leq 24.9 \\ \mathrm{nmol} / \mathrm{l} \end{gathered}$	1.32 (0.64-2.72)	Age at randomization, cholesterol, date	Mid-points of exposure categories

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
	Age: 50-69 years, Men Smokers							of blood draw, height, propensity to sunburn, weight	
$\begin{gathered} \text { Eide, } 2011 \\ \text { SKI23418 } \\ \text { USA } \end{gathered}$	HFHS, Prospective Cohort, Age: 65.9 years, M/W		Pathology reports	Radioimmunoassay	Incidence, NMSC	$\begin{gathered} \geq 15 \mathrm{vs} . \leq 14 \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$	1.80 (1.10-2.90)	Age, sex	
						$\begin{gathered} \geq 31 \text { vs. } \leq 18 \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$	$\begin{gathered} 1.60(1.10-2.30) \\ \text { Ptrend:0.02 } \end{gathered}$		$\begin{aligned} & \mathrm{Ng} / \mathrm{ml} \\ & \text { converted to } \\ & \text { nmol/l, } \\ & \text { midpoints of } \\ & \text { exposure } \\ & \text { categories } \end{aligned}$
		191/			Incidence, BCC	$\begin{gathered} \geq 15 \mathrm{vs} . \leq 14 \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$	1.70 (1.00-2.90)		Only two exposure levels, only included in the high vs. low figure
		$77 /$			Incidence, SCC	$\begin{gathered} \geq 15 \text { vs. } \leq 14 \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$	1.70 (0.70-4.00)		
$\begin{gathered} \text { Asgari, } 2010 \\ \text { SKI23419 } \\ \text { USA } \end{gathered}$	KPNC, Nested Case Control, Age: 54.9 years, M/W	$\begin{gathered} 220 / \\ 220 \text { controls } \\ 8.74 \end{gathered}$	Pathology reports	DiaSorin LIAISON 25(OH) Vitamin D Total Assay	Incidence, BCC	≥ 30 vs. ≤ 9.9 (clinical tertiles) $\mathrm{ng} / \mathrm{ml}$	$\begin{gathered} 3.61(1.00- \\ 13.10) \\ \text { Ptrend:0.03 } \end{gathered}$	BMI, educational level, history of cancer, smoking status, x-ray, sun exposure surrogates (hours of exercise and leisure activities,	$\mathrm{ng} / \mathrm{ml}$ converted to nmol/l, RR rescaled to 30 nmol/l increment used
						Per $1 \mathrm{ng} / \mathrm{ml}$	1.02 (1.00-1.05)		
						$\begin{gathered} \geq 29.79 \mathrm{vs} . \\ \quad \leq 14.69 \\ \text { (quintiles) } \mathrm{ng} / \mathrm{ml} \end{gathered}$	2.09 (0.95-4.58)		

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
								occupational UV, occupational sun exposure level)	
Tang, 2010 SKI23420 USA	MrOS, Nested Case Control, Age: 65- years, M, Elderly	$\begin{gathered} 178 / \\ 930 \text { controls } \end{gathered}$	Self-reported	LCmass spectroscopy	Incidence, NMSC	$\begin{gathered} \geq 32 \text { vs. } \leq 31.9 \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$	0.59 (0.34-1.01)	Age, BMI, cigarette smoking, clinic site, season of blood draw, outdoor walking activity	$\mathrm{ng} / \mathrm{ml}$ converted to nmol/l, midpoints of exposure categories
						$\begin{gathered} \geq 29.9 \text { vs. } \leq 29.8 \\ \mathrm{ng} / \mathrm{ml} \end{gathered}$	0.60 (0.37-0.98)		
						$\begin{gathered} 29.9-58.3 \mathrm{vs} \text {. } \\ \leq 15.9 \mathrm{ng} / \mathrm{ml} \end{gathered}$	$\begin{gathered} 0.54(0.31-0.96) \\ \text { Ptrend:0.044 } \end{gathered}$		

RR estimates of melanoma by levels of vitamin \mathbf{D} in blood: One study on melanoma (Major, 2012) reported risk estimates by levels of circulating vitamin D. Only RR for highest vs. lowest comparisons or for continuous increments are shown in other studies. Therefore a figure of RR estimates of cutaneous melanoma by levels of circulating vitamin D in each study is not provided in this section.

Figure 29 RR (95% CI) of melanoma for the highest compared with the lowest level of vitamin D in blood

Note: The upper CI (23.3) is out of the Figure 29 for Afzal, 2013

Figure 30 Relative risk of melanoma for $30 \mathrm{nmol} / /$ increase of vitamin \mathbf{D} in blood

Figure 31 RR estimates of NMSC by levels of vitamin D in blood

Figure 32 RR ($\mathbf{9 5 \%} \mathbf{~ C I}$) of NMSC for the highest compared with the lowest level of vitamin D in blood

Figure 33 Relative risk of NMSC for $30 \mathrm{nmol} / /$ increase of vitamin D in blood

Figure 34 RR estimates of BCC by levels of vitamin D in blood

Circulating vitamin $\mathrm{D}(\mathrm{nmol} / \mathrm{l})$

Figure 35 RR ($\mathbf{9 5 \%}$ CI) of BCC for the highest compared with the lowest level of vitamin D in blood

Figure 36 Relative risk of BCC for $\mathbf{3 0} \mathbf{~ n m o l} / \mathrm{l}$ increase of vitamin D in blood

RR estimates of SCC by levels of vitamin D in blood: One study on SCC (Liang, 2012) reported risk estimates by levels of circulating vitamin D. Only RR for highest vs. lowest comparisons or for continuous increments are shown in other studies. Therefore a figure of RR estimates of SCC by levels of circulating vitamin D in each study is not provided in this section.

Figure 37 RR ($\mathbf{9 5 \%}$ CI) of SCC for the highest compared with the lowest level of vitamin D in blood

Author	Year	Sex		high vs low RR (95\% CI)	Study	
					Description	Comparison
van der Pols	2013	M/W	-	0.78 (0.50, 1.23)	NSCS	≥ 50 vs $\leq 49 \mathrm{nmol} / \mathrm{l}$
Liang	2012	W	-	3.96 (1.68, 9.34)	NHS	$\geq 34.3 \mathrm{vs} \leq 20.4 \mathrm{ng} / \mathrm{ml}$
Liang	2012	W		$\rangle 4.95(0.41,59.28)$	NHS II	$\geq 31.5 \mathrm{vs} \leq 19.6 \mathrm{ng} / \mathrm{ml}$
Eide	2011	M/W		1.70 (0.70, 4.00)	HFHS	$\geq 15 \mathrm{vs} \leq 14 \mathrm{ng} / \mathrm{ml}$

Figure 38 Relative risk of SCC for $30 \mathrm{nmol} / /$ increase of vitamin D in blood

5.5.10 Vitamin D in diet

Cohort studies

Summary
Two studies (two publications on BCC) were identified in the 2005 SLR and one study (one publication on melanoma) was identified in the CUP (Table 36).

No meta-analysis was conducted.

Malignant melanoma

In the VITAL cohort study, a statistically non-significant positive association was reported (RR: $1.31,95 \% \mathrm{CI}=0.94-1.82$, comparing $>7.1-53$ vs. $0.3 \mu \mathrm{~g} /$ day)(Asgari, 2009).

Basal cell carcinoma

In the EPIC-Norfolk cohort study (109 cases), a statistically non-significant positive association was reported (RR: $1.07,95 \% \mathrm{CI}=0.85-1.35$ for an increment of $2.08 \mu \mathrm{~g} / \mathrm{day}$) (Davies, 2002). Similar association was reported in the Nurses' Health Study (771 cases) (RR: $1.02,95 \% \mathrm{CI}=0.81-1.27$, comparing 288.5 vs. $45.2 \mathrm{IU} /$ day) (Hunter, 1992).

5.5.10 Vitamin D in diet and supplement

Cohort studies

Summary
Two studies (two publications on BCC) were identified in the 2005 SLR and one study (one publication on melanoma) was identified in the CUP (Table 36).

No meta-analysis was conducted.

Malignant melanoma

In the VITAL cohort study, no association was reported (RR: 1.05, 95\% CI= 0.79-1.40, comparing $>14-58$ vs. $0-5.1 \mu \mathrm{~g} /$ day) (Asgari, 2009).

Basal cell carcinoma

In the 2005 SLR, the summary OR for $10 \mu \mathrm{~g} /$ day increment was $1.08,95 \% \mathrm{CI}=1.00-1.17$ combining two cohorts (van Dam, 2000 HPFS; Hunter, 1992, NHS).

Table 35 Vitamin D in diet and supplement and skin cancer risk. Results of meta-analysis published after the 2005 SLR

Author, Year	Number of studies	Total number of cases	Studies country, area	Outcome	Comparison	RR (95\% CI)	Heterogeneity ($\mathbf{I}^{2}, \mathbf{p}$ value)
Meta-analysis							
Caini, 2014	1 RCT, 1 cohort study, 3 case- control studies	1678	USA, Italy	Cutaneous melanoma	Highest vs. lowest	1.03 (0.95-1.13)	
	$\begin{aligned} & 1 \mathrm{RCT}, 3 \\ & \text { cohort } \\ & \text { studies } \end{aligned}$	4246	USA, UK	NMSC		0.86 (0.63-1.13)	56\%

5.5.10 Vitamin D in supplement

Cohort studies

Summary
No studies were identified in the 2005 SLR and one study (one publication on melanoma) was identified in the CUP (Table 36).

No meta-analysis was conducted.

Malignant melanoma

In the VITAL cohort study, melanoma risk was not associated with 10 -year use of individual vitamin D supplements (RR: $1.08,95 \% \mathrm{CI}=0.82-1.43$ compared with no use) or with 10 -year average intake from individual and multivitamin supplements (RR: 1.13, $95 \% \mathrm{CI}=0.89-1.43$, comparing $>9.9-30 \mu \mathrm{~g} /$ day vs. none) (Asgari, 2009).

5.5.10 Vitamin D and calcium in supplement

Randomised controlled trial

Summary
No RCTs were identified in the 2005 SLR and one RCT (ad hoc analyses on melanoma and NMSC) was identified in the CUP.

In the Women's Health Initiative calcium/vitamin D randomised controlled trial, postmenopausal women age 50 to 79 years were randomly assigned to receive $1,000 \mathrm{mg}$ of elemental calcium plus 400 IU of vitamin D3 (CaD) daily or placebo for a mean follow-up period of 7 years. NMSC and melanoma were ascertained by annual self-report; melanoma skin cancers were confirmed by medical record review, including pathology reports.

Malignant melanoma

Supplementation of calcium and vitamin D3 did not affect the risk of melanoma (RR: 0.86; 95% CI $0.64-1.16 ; 82$ cases in the active group and 94 in the placebo group). In subgroup analysis, supplemented women who reported a history of NMSC had lower risk of melanoma than women in the placebo group (RR: 0.43; 95\% CI $0.21-0.90$) but this effect was not seen in women without history of NMSC (RR: $1.02 ; 95 \%$ CI 0.73 to 1.41$)\left(\mathrm{P}_{\text {minearame }}=0.038\right)$ (Tang, 2011; Brunner, 2011).

Non-melanoma skin cancer

Supplementation of calcium and vitamin D3 did not have an effect on self-reported NMSC (RR: $1.02 ; 95 \% \mathrm{CI}, 0.95-1.07 ; 1683$ cases in the calcium/vitamin D3 group and 1,655 cases in the placebo group). There was no effect on any of the subgroups examined (by age, BMI, total vitamin D intake, solar radiation, history of cancer, history of melanoma, or history of NMSC (Tang, 2011).

Table 36 Vitamin D, vitamin D (and calcium) and skin cancer risk. Main characteristics of identified studies.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
Randomized controlled trials								
Brunner, 2011 USA	WHI Randomised Control Trial, Age: 50-79 years, W, postmenopausal	60 (placebo), 54 (treatment)/ 18106 (placebo), 18176 (treatment)	Self-reported medical history annually verified by medical records	Supplementation with 1000 mg of elemental calcium, 400 IU vitamin D3 or placebo daily for 7 years	Incidence, MM	Treatment vs. placebo Treatment vs. placebo (adherent women)	$\begin{aligned} & 0.91(0.63-1.32) \\ & \hline 1.09(0.68-1.73) \end{aligned}$	Age, treatment assignment
$\begin{gathered} \text { Tang, } 2011 \\ \text { USA } \end{gathered}$	WHI Randomised Control Trial, Age: 50-79 years, W, postmenopausal	94 (placebo), 82 (treatment)/ 18106 (placebo), 18176 (treatment) 24 (placebo), 10 (treatment)/ 70 (placebo), 72 (treatment)/ 1655 (placebo), 1683 (treatment)/	Self-reported medical history annually verified by medical records, pathology reports	Supplementation with 1000 mg of elemental calcium, 400 IU vitamin D3 or placebo daily for 7 years	Incidence, MM With history of NMSC No history of NMSC NMSC	Treatment vs. placebo	0.86 (0.64-1.16) 0.43 (0.21-0.90) 1.02 (0.73-1.41) $1.02(0.95-1.07)$	Age, treatment assignment
Cohort studies								
Asgari, 2009 USA	VITAL, Prospective	$\begin{gathered} 441 / \\ 68611 \end{gathered}$	Cancer registry	Total FFQ	Incidence, MM	$\begin{gathered} >14-58 \text { vs. } 0-5.1 \\ \mu \mathrm{~g} / \text { day } \end{gathered}$	$\begin{gathered} 1.05(0.79-1.40) \\ \text { Ptrend:0.56 } \end{gathered}$	Age, gender, education, 1

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI) } \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	Cohort, Age: 50-76 years, M/W	420/		Dietary		$\begin{gathered} >7.1-53 \text { vs. } 0-3 \\ \mu \mathrm{~g} / \text { day } \end{gathered}$	$\begin{gathered} 1.31(0.94-1.82) \\ \text { Ptrend:0.05 } \end{gathered}$	degree family history melanoma, personal history of NMSC, ever had moles removed, freckles between ages 10 and 20 years, had ≥ 3 severe sunburns between ages 10 and 20 years, natural red/blond hair between ages 10 and 20 years, and reaction to $1-\mathrm{h}$ in strong sunlight; dietary and total intakes additionally adjusted for total energy intake
		$450 /$		Supplement use, 10 -year use of individual supplements		Former/current vs. none	1.08 (0.82-1.43)	
		$450 /$		10-year average intake from individual and multivitamin supplements		$>9.9-30 \mu \mathrm{~g} / \text { day }$ vs. none	$\begin{gathered} 1.13(0.89-1.43) \\ \text { Ptrend:0.36 } \end{gathered}$	
$\begin{gathered} \text { Davies, } 2002 \\ \text { SKI00989 } \\ \text { UK } \end{gathered}$	EPIC-Norfolk, Nested Case Control, Age: 65 (W), 67.8 (M),	$\begin{aligned} & 109 / \\ & 356 \end{aligned}$	East Anglian Cancer Registry	Dietary Validated selfreported 7-day food diary	Incidence, BCC	Per $2.08 \mu \mathrm{~g} / \mathrm{day}$	$\begin{gathered} 1.068(0.845- \\ 1.348) \end{gathered}$	BMI, red hair colour, dietary component

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	M/W							
van Dam, 2000 SKI01672 USA	HPFS, Prospective Cohort, Age: 40-75 years, M, health professionals	$\begin{gathered} 3190 / \\ 43217 \end{gathered}$	Family members, co-workers, postal authorities, National Death Index	Total Validated 131item FFQ	Incidence, BCC	$\begin{gathered} 752 \text { vs. } 98 \\ \text { IU/day } \end{gathered}$	$\begin{gathered} 1.10(0.94-1.30) \\ \text { Ptrend:0.63 } \end{gathered}$	2 year follow-up periods, carotenes, folate, frequency of physical examinations, hair colour, major ancestry, mean solar radiation, retinol, smoking habits, vitamin C, vitamin E
$\begin{gathered} \text { Hunter, } 1992 \\ \text { SKI03249 } \\ \text { USA } \end{gathered}$	NHS, Prospective Cohort, Age: 30-55 years, W, nurses	$\begin{gathered} 771 / \\ 73366 \end{gathered}$	Self-report verified by medical records	Dietary Semi-quantitative FFQ Total	Incidence, BCC	\qquad 601.2 vs. 53.6 IU/day	$\begin{gathered} 1.02(0.81-1.27) \\ \text { Ptrend:0.57 } \\ \hline \\ \\ 1.08 \text { (0.86-1.35) } \\ \text { Ptrend:0.18 } \end{gathered}$	Age, area of residence, BMI , childhood tendency to sunburn, contemporary date, hair colour, lifetime number severe sunburns, UV exposure

5.5.18 Multivitamins supplement

Randomised controlled trials

Summary
No studies were identified in the 2005 SLR and three studies (four publications on skin cancer, melanoma, NMSC, BCC, SCC) were identified in the CUP.

No meta-analysis was conducted due to insufficient number of studies. The study characteristics and results are described and tabulated.

Skin cancer

SU.VI.MAX was a randomised, double-blind, placebo-controlled trial on the effect of antioxidant and mineral supplementation on the incidence of cancer and ischemic cardiovascular disease in the general population (a single daily capsule of a combination of 120 mg of ascorbic acid, 30 mg of vitamin E, 6 mg of beta carotene, $100 \mu \mathrm{~g}$ of selenium, and 20 mg of zinc, or a placebo; median follow-up time was 7.5 years). A total of 157 cases of skin cancer were identified. There was no statistically significant effect of supplementation on skin cancer risk in men (RR: 0.69; 95\% $\mathrm{CI}=0.43-1.10$), an increased risk of skin cancer was observed in supplemented women (RR: 1.68; 95\% CI= 1.06-2.65) (Hercberg, 2007).

Malignant melanoma

A large randomised, double-blind, placebo-controlled trial of multivitamin supplementation with median follow-up of 11.2 years enrolled 14641 male physicians from which 1312 men had history of skin cancer (PHS II study). No statistically significant effect on malignant melanoma risk was observed (RR: 1.12; 95\% CI= 0.85-1.47, 108 cases in the treatment arm and 96 cases in the placebo group). After excluding participants with history of skin cancer, the results did not change substantially (RR of melanoma: 1.12; 95\% CI=0.84-1.49, 100 cases in the treatment arm and 89 cases in the placebo group) (Gaziano, 2012). Mortality for melanoma was lower (but the difference was statistically non-significant) in supplemented participants (RR: 0.91; 95\% CI=0.37-2.25, 9 cases in the treatment arm and 10 cases in the placebo group).

In the SU.VI.MAX trial, a statistically non-significant reduction of melanoma incidence among men (RR: $0.49 ; 95 \% \mathrm{CI}=0.12-1.97,3$ cases in the treatment arm and 6 cases in the placebo group) and a statistically significant increase among women (RR: 4.31; 95\% $\mathrm{CI}=1.23-15.13,13$ cases in the treatment arm and 3 cases in the placebo group) were observed (Hercberg, 2007). In a subsequent analysis five years after 7.5 years of treatment (12.5 years total) there was no evidence of a residual or delayed effect of antioxidant supplementation on risk of melanoma in men and women (RR: 1.15; 95\% CI=0.31-4.27, 8 cases in the treatment arm and 10 cases in the placebo group; RR: 0.64; 95\% CI= 0.18-2.27, 17 cases in the treatment arm and 9 cases in the placebo group, respectively) (Ezzedine, 2010). These results are not directly comparable with those reported in the earlier publication from SU.VI.MAX, described above, due to additional adjustments for sunburn during childhood, phototype, and self-assessed lifetime sun exposure in the 2010 manuscript.

Non-melanoma skin cancer

The SU.VI.MAX trial reported a statistically non-significant reduction in non-melanoma skin cancer incidence among men and a statistically significant increase among supplemented women in the antioxidant and mineral supplementation group (RR: 0.72; 95\% CI=0.44-1.18, 38 cases in the treatment arm and 27 cases in the placebo group; RR: 1.37; 95\% CI=0.832.28, 30 cases in the treatment arm and 37 cases in the placebo group, respectively (Hercberg, 2007).

In the MRC/BHF Heart Protection double-blind placebo randomized trial there was no effect of 5-year treatment with 600 mg synthetic vitamin $\mathrm{E}, 250 \mathrm{mg}$ vitamin C , and 20 mg bcarotene daily (Heart protection study collaborative group, 2002).

Basal cell carcinoma

Antioxidant supplementation in the SU.VI.MAX trial had no effect on BCC in men and women (RR: 1.22; 95\% CI= 0.64-2.33, 47 cases in the treatment arm placebo groups each; RR: $0.70 ; 95 \% \mathrm{CI}=0.48-1.65,53$ cases in the treatment arm and 45 cases in the placebo group, respectively) in analysis five years after the 7.5 years of treatment (12.5 years total) (Ezzedine, 2010).

Squamous cell carcinoma

Antioxidant supplementation in the SU.VI.MAX trial had no effect on SCC (RR: 1.38; 95\% $\mathrm{CI}=0.49-3.84,13$ cases in the treatment arm and 12 cases in the placebo group in men; RR: $0.95 ; 95 \% \mathrm{CI}=0.19-4.67,6$ cases in the treatment arm and 4 cases in the placebo group in women) in analysis five years after the 7.5 years of treatment (12.5 years total) (Ezzedine, 2010).

Cohort studies

Summary

Nine publications from five studies (on melanoma, BCC and SCC) were identified in the 2005 SLR and two publications from one study (on melanoma) were identified in the CUP.

No meta-analysis was conducted due to insufficient number of studies. The study characteristics and results are described and tabulated.

Malignant melanoma

The VITAL cohort study (566 cases) reported a positive statistically non-significant association of multivitamin use and melanoma (RR: 1.16; 95\% CI= 0.97-1.39) (Asgari, 2012). Similar results were observed in men (286 cases) and women (165 cases) (RR: 1.05 ; $95 \% \mathrm{CI}=0.82-1.34$, p-trend=0.67; RR: $1.04 ; 95 \% \mathrm{CI}=0.73-1.48$, p-trend= 0.85 , respectively) (Asgari, 2009).

Multivitamin supplementation was not associated with melanoma in the NHS and NHS II (RR for current users compared to never users: 1.02; 95\% $\mathrm{CI}=0.82-1.28,411$ cases) (Feskanich, 2003).

A nested case-control study (23 cases) in Maryland, USA reported that users of multivitamin supplements had 2.5 times higher odds of melanoma compared to non-users with a p-value= 0.22 (Cornwell, 1992).

Basal cell carcinoma

The NHS study with 12 years of follow-up of female registered nurses found a statistically non-significant positive association of multivitamin supplementation and BCC, RR: 1.10; 95\% CI= 1.00-1.10, 5392 cases (Fung, 2002b). No association was reported in a previous publication (771 cases, 4 years of follow-up, data not shown in the publication)(Hunter, 1992).

A positive association of high level of multivitamin supplement use with BCC (3 190 cases) was reported in the HPFS study (8 years of follow-up). The multivariate RRs for past multivitamin use and weekly use of $<5,6-9$, and >9 multivitamin pills were 1.04, 1.03, 1.08 , and 1.34 (95% CI: $1.16,1.55$), respectively compared with nonusers.

In a prospective cohort study from Arizona in people with moderate sun-damage and no history of skin cancer, multivitamin supplement use was not related to BCC after 5 years of follow up, compared to daily use (RR: 1.13; 95\% CI= 0.78-1.64, 144 cases) (Foote, 2001).

Squamous cell carcinoma

No association between multivitamins intake and SCC risk was identified in a large study using data from the NHS and HPFS cohorts (data not shown in the publication) (Fung, 2003).

In a prospective cohort study from Arizona in people with moderate sun-damage and no history of skin cancer, multivitamin supplement use was not related to SCC after 5 years of follow up, compared to daily use (RR: 1.02 ; $95 \% \mathrm{CI}=0.65-1.60$) (Foote, 2001).

Table 37 Multivitamin use and skin cancer risk. Main characteristics of identified studies.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
Randomized controlled trial								
Gaziano 2012, USA	PHS II, Randomised Control Trial, Age: ≥ 50 years, M, Physicians	$\begin{gathered} 108 \text { (treatment), } \\ 96 \text { (placebo)/ } \\ 7238 \text { (treatment), } \\ 7245 \text { (placebo) } \\ \hline \\ 9 \text { (treatment), } \\ 10 \text { (placebo)/ } \\ 7317 \text { (treatment), } \\ 7324 \text { (placebo) } \end{gathered}$	Medical record review Death certificate	Supplementation multivitamin daily (Centrum Silver)	Incidence, MM Mortality, MM	Treatment vs. placebo	1.12 (0.85-1.47) 0.91 (0.37-2.25)	Age, PHS cohort, randomised treatment assignment (beta carotene, vitamin E, and vitamin C), and stratified on baseline cancer
Ezzedine 2010, France	SU.VI.MAX, Randomised Control Trial M/W, Age: $51 / 46$ years	10 (treatment), 8 (placebo) $/$ 2569 (treatment), 2572 (placebo), 12.5 years (7.5 y. treatment and 5 y. follow-up) 9 (treatment),	Histopathology report or other medical record review	Supplementation 120 mg vitamin C, 30 mg vitamin E, 6 mg b-carotene, 100 $\mu \mathrm{g}$ selenium and 20 mg zinc in a single daily oral capsule	Incidence, MM, men	Treatment vs. placebo	1.15 (0.31-4.27)	Age, smoking status, dwelling latitude, sunburn during childhood, phototype, self-assessed lifetime sun exposure on the outcomes

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
		$\begin{gathered} 17 \text { (placebo)/ } \\ 3912 \\ \text { (treatment), } 3964 \\ \text { (placebo) } \end{gathered}$						
		47 (treatment), 47 (placebo)/			Incidence, BCC, men		1.22 (0.64-2.33)	
		45 (treatment), 53 (placebo)/			Women		0.70 (0.48-1.65)	
		12 (treatment), 13 (placebo)/			Incidence, SCC, men		1.38 (0.49-3.84)	
		6 (treatment), 4 (placebo)/			Women		0.95 (0.19-4.67)	
Hercberg 2007, France	SU.VI.MAX, Randomised Control Trial M/W, Age: 51/46 years	33 (treatment), 43 (placebo)/ 2569 (treatment), 2572 (placebo), 7.5 years	Histopathology report or other medical record review	Supplementation 120 mg vitamin C, 30 mg vitamin E, 6 mg b-carotene, 100 $\mu \mathrm{g}$ selenium and 20 mg zinc in a single daily oral capsule.	Incidence, SCC, men	Treatment vs. placebo	0.69 (0.43-1.10)	Age, current smoking, dwelling latitude
		$\begin{aligned} & 51 \text { (treatment), } 30 \\ & \text { (placebo)/ } \\ & 3912 \\ & \text { (treatment), } 3964 \\ & \text { (placebo) } \end{aligned}$			Women		1.68 (1.06-2.65)	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
		3 (treatment), 6 (placebo)/			Incidence, MM, men		0.49 (0.12-1.97)	
		13 (treatment), 3 (placebo)/			Women		4.31 (1.23-15.13)	
		30 (treatment), 37 (placebo)/			Incidence, NMSC, men		0.72 (0.44-1.18)	
		38 (treatment), 27 (placebo)/			Women		1.37 (0.83-2.28)	
Heart protection study collaborative group, 2002, UK	MRC/BHF Heart Protection Study, Randomised Control Trial, Age: 40-80 years, M/W Patients with coronary disease, other occlusive arterial disease, or diabetes	271 (treatment), 228 (placebo)/ 10269 (treatment), 10 267 (placebo), 5 years	Follow-up checks in the study clinics, subjects' general practitioners, UK national cancer and death registries.	Supplementation 600 mg synthetic vitamin E, 250 mg vitamin C, and 20 mg b-carotene daily	Incidence, NMSC	Treatment vs. placebo	Event rate ratio read from graph: 0.95 (0.80-1.15)	
Cohorts								
$\begin{gathered} \text { Asgari 2012 } \\ \text { USA } \end{gathered}$	VITAL, Prospective	$\begin{gathered} 566 / \\ 69635, \end{gathered}$	Through linkage with SEER	Supplement Self-administered	Incidence, MM	Current vs. never	1.16 (0.97-1.39)	Age

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	cohort, Age: 50-76 years M/W	5.84 years		questionnaire				
Asgari 2009, USA	VITAL, Prospective cohort, Age: 5076 years M/W	$\begin{gathered} 451 / \\ 286 \text { (men)/ } \\ 165 \text { (women)/ } \\ 69671, \\ 5 \text { years } \end{gathered}$	Through linkage with SEER	10-y use of multivitamins Self-administered questionnaire	Incidence, MM, men	Current vs. never	$\begin{gathered} 1.05(0.82-1.34) \\ 0.67 \end{gathered}$	Age at baseline, sex
				Overall use	Women		$\begin{gathered} 1.04(0.73-1.48) \\ 0.85 \end{gathered}$	sex), education, firstdegree family history of melanoma,
					Men and Women		$\begin{gathered} 1.04(0.85-1.27) \\ 0.65 \end{gathered}$	history of NMSC skin cancer, ever had
				Duration	Incidence, MM,	$\begin{gathered} \geq 7 \text { vs. } 0 \\ \text { years } \end{gathered}$	$\begin{gathered} 1.04(0.80-1.35) \\ 0.57 \end{gathered}$	moles removed, freckles between ages 10 and 20
					Women		$\begin{gathered} 1.08(0.75-1.56) \\ 0.79 \end{gathered}$	severe sunburns between ages 10 and
					Men and women		$\begin{gathered} 1.05(0.85-1.30) \\ 0.55 \end{gathered}$	20 years, natural red or blond hair between
				Pill-years	Incidence, MM, men	≥ 50 vs. 0	$\begin{gathered} 1.09(0.83-1.43) \\ 0.58 \end{gathered}$	skin reaction to 1 hour in strong sunlight
					Women		$\begin{gathered} 1.14(0.78-1.66) \\ 0.58 \end{gathered}$	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
					Men and women		$\begin{gathered} 1.11(0.89-1.38) \\ 0.44 \end{gathered}$	
				Lifetime use of multivitamins (since age 21 y) Self-administered questionnaire	Incidence, MM, men	$\begin{aligned} & \geq 15 \text { vs. } 0 \\ & \text { years } \end{aligned}$	$\begin{gathered} 1.08(0.79-1.48) \\ 0.30 \end{gathered}$	
					Women		$\begin{gathered} 1.01(0.68-1.51) \\ 0.73 \end{gathered}$	
					Men and women		$\begin{gathered} 1.07(0.84-1.37) \\ 0.30 \end{gathered}$	
Feskanich, 2003 SKI00696, USA	NHS and NHS-II, Two prospective Cohorts, Age: 25-77 years, W,	$\begin{gathered} 414 / \\ 73432 \text { (NHS); } 88 \\ 541 \text { (NHS II), } \\ >1.6 \text { million } \\ \text { person-years } \end{gathered}$	Self-report followed by medical records review	Supplement FFQ	Incidence, MM	Current vs. never	1.02 (0.82-1.28)	Age, area of residence, BMI, family history of specific cancer, follow-up cycle, hair colour, height, menopausal status, number of moles, number of sunburns, oral contraceptive use, parity, postmenopausal hormone use, skin reaction
Fung 2003, SKI00818, USA	NHS-HPFS, Prospective Cohort, Age: 30-75 years,	$\begin{gathered} 674 / \\ 129811, \\ 14 \text { years max } \end{gathered}$	Self-report followed by medical records review	Supplement FFQ	Incidence, SCC	-		-

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	M/W, Female nurses and Male Health Professionals							
Fung 2002, SKI01012, USA	NHS, Prospective Cohort, Age: 30-55 years, W, Female nurses	$\begin{gathered} 5392 / \\ 85836, \\ 951823 \text { person- } \\ \text { years } \end{gathered}$	Self-report	Supplement FFQ repeated every 2-4 years	Incidence, BCC	Users vs. non-users	1.10 (1.00-1.10)	Age, ancestry, area of residence, BMI, beer consumption, childhood sun exposure, energy intake, eye colour, hair colour, liquor, missing FFQ, red wine, smoking habits, tendency to burn in childhood, white wine
Foote 2001, SKI07414, USA	Arizona USA 1985-1992, Prospective Cohort, Age: 21-85 years, M/W, Moderately Sundamaged	$\begin{gathered} 144 / \\ 918 \\ 57 \text { months } \end{gathered}$	Clinical assessments, pathological diagnoses, active follow-up between visits	Supplement Any supplement use, Questionnaire	Incidence, BCC Incidence, SCC	Never vs. daily	$1.13(0.78-1.64)$ $1.02(0.65-1.60)$	Age
$\begin{gathered} \text { Van Dam } \\ 2000, \\ \text { SKI01672, } \\ \text { USA } \end{gathered}$	HPFS, Prospective Cohort, Age: 40-75 years,	$\begin{gathered} 3190 / \\ 43217, \\ 308071 \text { person- } \\ \text { years } \end{gathered}$	Self-report, next of kin, coworkers, postal	Supplement FFQ	Incidence, BCC	≥ 9 tablets/week vs. non users	1.34 (1.16-1.55)	Age, 2 year follow-up periods, energy intake, frequency of physical

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	RR (95% CI) Ptrend	Adjustment factors
	M, Health professionals		authorities, National Death Index					examinations, hair colour, major ancestry, mean solar radiation, smoking habits
$\begin{gathered} \text { Cornwell } \\ \text { 1992, } \\ \text { SKI03257, } \\ \text { USA } \end{gathered}$	Maryland USA 1974-1975, Nested Case Control, M/W	$\begin{gathered} 23 / \\ 46 \end{gathered}$	Mass campaign	Supplement Questionnaire	Incidence, MM	yes vs. no	$\begin{gathered} 2.50 \\ \text { Ptrend:0.22 } \end{gathered}$	Not known, partially adjusted
$\begin{gathered} \text { Hunter, } 1992 \\ \text { SKI03249 } \\ \text { USA } \end{gathered}$	NHS, Prospective Cohort, Age: 30-55 years, W, nurses	771/ 73 366, 4 years max	Self-report	Supplement FFQ	Incidence, BCC	-	-	-

5.5.19 Folate, pyridoxine $\left(B_{c}\right)$ and cobalamin $\left(B_{r}\right)$ in supplement

Randomised control trials

Summary
No RCTs were identified in the 2005 SLR. Three RCTs (three publications) on combinations of folic acid, B6 and B12 supplements and a pooled analysis of RCT on folic acid or combinations with vitamin B on melanoma risk were identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

The three RCTs tested treatments consisting of combinations of folic acid, vitamin B6, and vitamin B12: a daily dose of 2,25 and 0.5 mg , respectively, in the VITATOPS trial (Hankey, 2012); and $2.5,50$ and 1 mg , respectively, in both the WAFACS (Zhang, 2008) and HOPE 2 trials (Loon, 2006). No statistically significant effects on melanoma were observed compared to placebo administration. The RR were 0.43 ($95 \% \mathrm{CI}=0.09-2.08$) in the VITATOPS study after treatment for a median of 3.4 years (Hankey, 2012); RR: $1.00(95 \% \mathrm{CI}=0.20-4.96)$ in the WAFACS study after treatment for up to 7.3years (Zhang, 2008); and RR: 0.42 ($95 \% \mathrm{CI}=$ $0.15-1.19$) in the HOPE 2 study after an average of 5 years of intervention.

The three RCTs were combined in a published meta-analysis (Zhang, 2016) that reported a summary of folic acid and vitamins B supplementation on melanoma risk (RR: 0.47; 95\% $\mathrm{CI}=0.23-0.94 ; 12$ and 26 cases in the treatment and placebo groups respectively).

A pooled analysis of 13 placebo-controlled RCTs of folic acid supplementation (0.5-5 $\mathrm{mg} /$ day for an average of 5.2 years) - mostly in combination with vitamins B_{6} and $/$ or B_{12} - and cancer incidence, included 64 cases of melanoma identified in the treatment arm and 62 cases in the placebo arm in 11 of the RCT (Vollset, 2013). The RCT in the meta-analysis by Zang, 2016 were also included in the pooled analysis. Folic acid had no effect on melanoma risk (summary RR: 1.04 ($95 \% \mathrm{CI}=0.66-1.64$)

Table 38 Folate, pyridoxine (B6) and cobalamin (B12) in supplement and MM risk. Results of meta-analyses of randomised control trials published after the 2005 SLR.

Author, Year	Number of studies	Total number of cases	Studies country, area	Outcome	Comparison	RR (95\% CI)	Heterogeneity ($\mathbf{I}^{\mathbf{I}}, \mathbf{p}$ value)
Meta-analysis							
Zhang, 2016	3 randomised control trials	$12 / 26$	Multiple countries over 5 continents mainly USA, Canada, Australia, India and UK	MM	Treatment vs. placebo	0.47 (0.23-0.94)	0.575
Pooled-analysis							
Vollset, 2013*	13 randomised control trials (11 trials contributed cases)	126	$\begin{aligned} & \text { Multiple } \\ & \text { countries over } 5 \\ & \text { continents - } \\ & \text { mainly USA, } \\ & \text { Canada and } \\ & \text { Europe } \end{aligned}$	MM	Folate alone or in combination with vitamin B_{6} and/or B_{12} vs. placebo	1.04 (0.66-1.64)	0.23 (any first cancer incidence; MM-specific value not given)

Note: All randomised control trials included in the meta-analysis (Zhang, 2016) were identified in the present review.
*Folic acid doses ranged from $0.5-5 \mathrm{mg} /$ day and many trials included vitamins B_{6} and $/$ or $B_{r 1}$ in combination with folic acid.

Table 39 Folate, pyridoxine (B6) and cobalamin (B12) in supplement and skin cancer risk. Main characteristics of identified studies.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{aligned} & \text { RR }(\mathbf{9 5 \%} \% \mathrm{CI}) \\ & \text { Ptrend } \end{aligned}$	Adjustment factors
Hankey 2012, 20 countries over 5 continents mainly Australia, India and UK	VITATOPS, Randomised Control Trial, Age: 62.6 years, M, History of recent stroke or transient ischemic attack	4 (treatment), 11 (placebo)/ 4089 (treatment), 4075 (placebo), 3.4 years	Self-report of adverse events, attempted to be verified by hospital records or family physicians	Supplementation 2 mg folic acid, 25 mg vitamin B6, 500 μg vitamin B12 daily	Incidence, MM	Treatment vs. placebo	0.43 (0.09-2.08)	Not stated ("any potential imbalance in baseline characteristics and follow-up between the 2 groups")
Zhang 2008, USA	WAFACS, Randomised Control Trial, Age: ≥ 42 years, W, Health professionals previously randomised to treatment with either vitamin C, vitamin E or beta carotene	3 (treatment), 3 (placebo)/ 2721 (treatment), 2721 (placebo), 7.3 years	Self-report or deaths reported by next of kin, postal authorities, National Death Index; permission sought to obtain medical records, further reviewed by an end points committee of physicians blinded to randomisation	Supplementation 2.5 mg folic acid, 50 mg vitamin B6, 1000 $\mu \mathrm{g}$ vitamin B12 daily	Incidence, MM	Treatment vs. placebo	1.00 (0.20-4.96)	Age and previous randomised treatment assignment of either vitamin E, vitamin C , and beta carotene

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
Lonn 2006, 13 countries over 3 continents mainly Canada and USA	HOPE 2, Randomised Control Trial, M/W, Age: ≥ 55 years, history of vascular disease, diabetes, additional risk factors for atherosclerosis	5 (treatment), 12 (placebo)/ 2758 (treatment), 2764 (placebo), 5 years	Pathology reports	Supplementation 2.5 mg folic acid, 50 mg vitamin B6, 1000 $\mu \mathrm{g}$ vitamin B12 daily	Incidence, MM	Treatment vs. placebo	0.42 (0.15-1.19)	None

5.6.4 Selenium in diet

Cohort studies

Summary

Two studies (two publications on BCC) were identified in the 2005 SLR and one publication on BCC and SCC was identified in the CUP (Table 42).

No meta-analysis was conducted.

Basal cell carcinoma

Dietary selenium was not related to BCC risk in a follow-up study in an Australian cancer prevention trial (NSCS, Heinen, 2007) (RR: 0.95, $95 \% \mathrm{CI}=(0.59-1.50)$, comparing 99.1 vs. $70.1 \mu \mathrm{~g} / \mathrm{day}, 321 \mathrm{BCC}$ tumours in 149 participants) after 8 years of follow- up. Opposite associations (statistically non-significant) were observed in the group of participants with no history of skin cancer (RR for highest vs. lowest tertile: $0.49,95 \% \mathrm{CI}=0.20-1.20,658$ cases) and with skin cancer history (RR: 1.10, $95 \% \mathrm{CI}=0.59-1.90,311$ cases). No association was reported in a previous publication of the NSCS (McNaughton, 2005).

Dietary selenium was not related to BCC in the EPIC-Norfolk study (RR for $20 \mu \mathrm{~g} / \mathrm{day}$ increment: 1.07, $95 \% \mathrm{CI}=0.86-1.34$) (Davies, 2002).

Squamous cell carcinoma

Dietary selenium was statistically non-significantly positively related to SCC in an Australian study including 221 SC tumours in 116 participants (RR for $99.1 \mathrm{vs} .70 .1 \mu \mathrm{~g} / \mathrm{day}$: $1.30,95 \% \mathrm{CI}=0.77-2.30$) (Heinen, 2007). Similar estimates were reported in participants with no skin cancer history ($\mathrm{n}=646$) RR: $1.20,95 \% \mathrm{CI}=(0.34-4.50)$ and in participants with skin cancer history ($\mathrm{n}=294$), RR: $1.30,95 \% \mathrm{CI}=(0.71-2.40)$, comparing Q3 vs. Q1.

5.6.4 Selenium in blood

Cohort studies

Summary
Five studies (six publications on skin cancer, melanoma, BCC and SCC) were identified in the 2005 SLR and no new studies (one publication on BCC and SCC) were identified in the CUP.

No meta-analysis was conducted.

Skin cancer

In the Evans County Study, 26 skin cancer cases were identified but no risk estimate was reported (Peleg, 1985).

Malignant melanoma

No association was reported in the Maryland USA study (30 cases) (RR: $0.90,95 \% \mathrm{CI}=0.30-$ 2.50 for the highest vs. lowest comparison) (Breslow, 1995) and in a Finnish study (the unadjusted risk estimate was 0.79 , statistically non-significant) (Knekt, 1991).

Basal cell carcinoma

In an Australian study, selenium in blood was inversely associated with BCC risk (RR: 0.43, $95 \% \mathrm{CI}=0.21-0.86$) (van der Pols, 2009) in the tumour-based analysis, but not in the personbased analysis (RR: $0.58,95 \% \mathrm{CI}=(0.32-1.07)$, comparing $1.4 \mathrm{vs} .0 .9 \mu \mathrm{~mol} / \mathrm{L}$ (NSCS, van der Pols, 2009). In the Maryland USA study (32 cases), the association was inverse but statistically non-significant, RR: $0.80,95 \% \mathrm{CI}=(0.10-4.5)$ (Breslow, 1995). In the FMCHES, a statistically non-significant association was reported in men (R: 0.54) and women (RR: 1.55) (Knekt, 1990b).

Squamous cell carcinoma

In the NSCS study (59 cases), a statistically significant inverse association was reported in the tumour based as well as person-based analyses, RR: $0.36,95 \% \mathrm{CI}=0.15-0.82$ and RR: $0.49,95 \% \mathrm{CI}=(0.24-0.99)$, comparing 1.4 vs. $0.9 \mu \mathrm{~mol} / \mathrm{L}$, respectively (van der Pols, 2009).

Statistically non-significant inverse associations were reported in the SKICAP study (119 cases), RR: $0.67,95 \% \mathrm{CI}=(0.35-1.29)$ (Karagas, 1997) and in the Maryland USA study (37 cases), RR: $0.60,95 \% \mathrm{CI}=(0.20-1.50)$ (Breslow, 1995).

5.6.4 Selenium in supplements

Randomised controlled trials

Summary

One RCT (three publications on melanoma, BCC) were identified in the 2005 SLR. Two new RCTs (three publications on skin cancer, melanoma, NMSC, BCC, and SCC) were identified in the CUP (Table 42).

The Negative Biopsy Trial (NBT) was a randomized, double-blind clinical placebo controlled trial conducted in United States and New Zealand to investigate the effect on prostate cancer incidence of daily supplementation with $200 \mu \mathrm{~g} / \mathrm{day}$ or $400 \mu \mathrm{~g} /$ day of selenium for up to five years (Algotar, 2013).

NPC Trial was performed among residents of low-selenium areas in the Eastern USA. The trial included persons with a history of NMSC. Eligible persons had a history of $>=2 \mathrm{BCCs}$ or 1 SCC with at least 1 carcinoma having occurred within the year preceding randomisation. Participants were randomised to receive 200 mcg selenium supplied in a 0.5 -g-high-selenium baker's yeast tablet daily or a placebo.

A small, multicentre, randomised, placebo-controlled, parallel group study in 184 recent organ transplant recipients treated for 3 years with $200 \mathrm{mug} /$ day selenium (91 patients) or a matching placebo (93 patients), tested supplementation effect on warts and various keratoses (main criterion) and skin cancer risk (secondary criterion).

Skin cancer

In the organ transplant patients' study, supplementation had no effect on skin cancer risk (OR: 3.08, p value=0.15) (Dreno, 2007).

Malignant melanoma

In the NBT trial, no effect of selenium supplementation on melanoma risk was observed (p value: 0.87) (Algotar, 2013).

In the NPC trial, in the period 1983-1996, 11 melanoma cancer cases were identified in the selenium group against the 9 in the placebo group (RR: 1.18, 95\% CI= (0.49-2.85) (DuffieldLillico, 2002).

Non-melanoma skin cancer

In a substudy in the NPC trial, after approximately 6 years of intervention, the group receiving $200 \mu \mathrm{~g} /$ day of selenium experienced an increase in NMSC incidence (RR: 1.5, 95\% $\mathrm{CI}=1.13-2.04, \mathrm{p}<.006$), whereas there was no evidence of NMSC increase in the group receiving $400 \mu \mathrm{~g} / \mathrm{day}$ of selenium (RR: $0.91 ; 95 \% \mathrm{CI}=0.69-1.20$), in comparison with the placebo group. There was little evidence that baseline selenium status modified the effect of the treatment with $400 \mu \mathrm{~g} / \mathrm{day}$. The increase in NMSC incidence was observed among participants at all levels of selenium status and treated with $200 \mu \mathrm{~g} / \mathrm{day}$. (Reid, 2008).

Basal cell carcinoma

In the NBT trial, there was no effect of selenium supplementation on BCC (p value: 0.82) (Algotar, 2013).

In a substudy in the NPC trial, a statistically non-significant increased risk of BCC was observed in the $200 \mu \mathrm{~g} /$ day treated group (RR: $1.22,95 \% \mathrm{CI}=0.88-1.70$) but not in the 400 $\mu \mathrm{g} /$ day group (RR: $0.95,95 \% \mathrm{CI}=0.69-1.29$).

Squamous cell carcinoma

In the NBT trial, there was no effect of selenium supplementation on SCC (p-value: 0.002) (Algotar, 2013).

In the substudy in the NPC trial, an increased risk of SCC was observed in the $200 \mu \mathrm{~g} / \mathrm{day}$ treated group (RR: $1.88,95 \% \mathrm{CI}=1.28-2.79$) but not in the $400 \mathrm{~g} /$ day group (RR: $1.05 ; 95 \%$ CI: 0.72-1.53)

Cohorts

Summary
One study was identified in the CUP.

Malignant melanoma

In the VITAL cohort study, inverse but no association was reported (RR: 0.98, $95 \% \mathrm{CI}=0.69$ 1.41) when comparing intake of $\geq 50 \mu \mathrm{~g} /$ day vs. none (Asgari, 2009).

Table 40 Selenium from supplements and NMSC risk. Results of meta-analyses of randomised control trials published after the 2005 SLR.

$\left.$| Author, Year | Number of studies | Total
 number
 of cases | Studies country,
 area | Outcome | Comparison | RR (95\% CI) |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | | Heterogeneity |
| :--- |
| $\left(\mathbf{I}^{2}, \mathbf{p}\right.$ value) | \right\rvert\,

Note: All randomised control trials were identified in the present review.

5.6.4 Selenium in toenail (\& fingernail)

Cohorts

Summary

One study on melanoma was identified in the 2005 SLR and none were identified in the CUP (Table 42).

Malignant melanoma

In the Nurses' Health Study (63 cases), positive but statistically non-significant association of nail selenium and melanoma was reported, RR: $1.66,95 \% \mathrm{CI}=$ (0.71-3.85), comparing highest vs. lowest quantiles (Garland, 1995).

Table 41 Circulating, toenail selenium or selenium supplement and skin cancer risk. Results of meta-analyses of prospective studies published after the 2005 SLR.

Author, Year	Number of studies	Total number of cases	Studies country area	Outcome	Comparison	RR (95\% CI)	Heterogeneity ($\mathbf{I}^{2}, \mathbf{p}$ value)
Meta-analyses							
Cai, 2016	2 cohort studies and 2 randomised control trials	-	USA, Finland	All types of skin cancer combined	Highest vs. lowest	1.09 (0.98-1.21)	0\%

Note: Studies on circulating, toenail selenium or selenium supplement combined.

Table 42 Blood, total, dietary or supplemental selenium and skin cancer risk. Main characteristics of identified studies.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR (95\%CI) } \\ \text { Ptrend } \end{gathered}$	Adjustment factors
Algotar, 2013 USA and New Zealand	NBT, Randomised Control Trial, Age: <80 years, M, subjects at high risk of prostate cancer	2 (placebo), 3 (treatment)/ 232 (placebo), $234(200$ $\mu \mathrm{g} /$ day), 233 $(400 \mu \mathrm{~g} /$ day) 5 years max 2 (placebo), 2 (treatment)/	Follow-up every 6 months	Supplementation with $200 \mu \mathrm{~g}$ or placebo daily $400 \mu \mathrm{~g} \text { or placebo }$	MM	Treatment vs. placebo	Fisher exact test Pvalue:0.87 (for comparison of three treatments: placebo, $200 \mu \mathrm{~g}$ and $400 \mu \mathrm{~g}$ selenium)	-

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
								hair between ages 10-20 years, reaction to 1 -hour in strong sunlight
$\begin{gathered} \text { van der Pols JC, } \\ 2009 \\ \text { SKI23427 } \\ \text { Australia } \end{gathered}$	NSCS, Nested Case Control, M/W	77 cases/ 562 8 years	Biennial follow-up questionnaires, histological reports	Serum selenium was analysed by atomic absorption spectrometry using a graphite furnace and Zeeman background correction	\qquad	$\begin{gathered} 1.4 \text { vs. } 0.9 \\ \mu \mathrm{~mol} / \mathrm{L} \end{gathered}$	0.58 (0.32-1.07)	Age, sex, alcohol intake, pack years of smoking, time spent outdoors on weekends, history of skin cancer
		59 tumours/ 544			BCC (tumourbased incidence)		0.43 (0.21-0.86)	
		59 cases/ 544			SCC (personbased incidence)		0.49 (0.24-0.99)	
		59 tumours/ 544			$\begin{aligned} & \text { SCC (tumour- } \\ & \text { based } \\ & \text { incidence) } \end{aligned}$		0.36 (0.15-0.82)	
Reid, 2008 USA	NPC, Randomised Control Trial, M/W	$\begin{gathered} 108 \text { (placebo), } 98 \\ \text { (treatment)/ } 213 \\ \text { (placebo), } 210 \\ (400 \mu \mathrm{~g} / \text { day }) \\ \text { Up to } 6 \text { years } \\ \text { intervention } \end{gathered}$	Medical records	Supplementation with $400 \mu \mathrm{~g} \mathrm{Se}$ yeast or placebo daily	Incidence, NMSC	Treatment vs. placebo (Macon)	0.91 (0.69-1.20)	Age, smoking, gender
		83 (placebo), 76 (treatment)/			BCC		0.95 (0.69-1.29)	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	kidney, liver or heart transplant patients	(treatment), 3 -years of supplementation and 2 years of monitoring		placebo daily				
Heinen, 2007 Australia	NSCS, Follow-up of skin cancer trial participants, Age: avg. between 53-65 years, M/W	116 (221 tumours)/ 1001 8 years	Questionnaires, confirmed through histological reports	Dietary 129-item semiquantitative FFQ	Tumour-based incidence, SCC	99.1 vs. 70.1 $\mu g /$ day	$\begin{gathered} 1.30(0.77-2.30) \\ \text { Ptrend:0.47 } \end{gathered}$	Additionally adjusted for tanning ability of skin
		646 participants			No skin cancer history		1.20 (0.34-4.50)	
		294 participants			With skin cancer history		1.30 (0.71-2.40)	
		$\begin{aligned} & 149 \text { (321 } \\ & \text { tumours) } \end{aligned}$			Tumour-based incidence BCC		$\begin{gathered} 0.95(0.59-1.50) \\ \text { Ptrend:0.81 } \end{gathered}$	Age, sex, energy intake, skin colour, elastosis of the neck, number of painful sunburns, smoking, treatment allocation, use of dietary supplements, history of skin cancer
		658 participants			No skin cancer history		0.49 (0.20-1.20)	
		311 participants			With skin cancer history		1.10 (0.59-1.90)	
McNaughton,	NSCS,	90/	Through		Incidence, BCC	Q 4 vs. Q 1	1.13 (0.47-2.74)	Age, sex, supplement use, total energy intake
SKI22177 Australia	Control, Age: 55 years		doctors and pathology	129-item semiquantitative FFQ		Linear trend	1.05 (0.79-1.39)	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	M/W		laboratories					
				Serum selenium measured by atomic using Zeeman background correction		Q 4 vs. Q 1	0.86 (0.38-1.96)	Age, sex
						Linear trend	0.96 (0.74-1.24)	
		No subjects reported consuming supplement		Supplement use		-	-	-
$\begin{gathered} \text { Davies, } 2002 \\ \text { SKI00989 } \\ \text { UK } \end{gathered}$	EPIC-Norfolk, Nested Case Control, Age: 65 (W), 67.8 (M) years M/W	$\begin{gathered} 109 / \\ 1976 \end{gathered}$	Cancer registry	Dietary Self-reported 7-day food diary	Incidence, BCC	Per $20 \mu \mathrm{~g} /$ day	1.07 (0.86-1.34)	BMI, hair colour, dietary components
Duffield-Lillico, 2002 SKI00967 USA	NPC, Randomised Control Trial, Age: 63 years M/W, history of NMSC living in low selenium area	$\begin{gathered} 9 \text { (placebo), } 11 \\ \text { (treatment)/ } 629 \\ \text { (placebo), } 621 \\ \text { (treatment), } \\ 7.4 \text { years }(1983- \\ 1996) \end{gathered}$	Dermatologic examinations	Supplementation with $200 \mu \mathrm{~g}$ selenium or placebo daily	Incidence, MM	Treatment vs. placebo	$\begin{gathered} 1.18(0.49-2.85) \\ \text { Ptrend:0.71 } \end{gathered}$	Age, sex, smoking habits
Combs, 1997	NPC,	/727	Dermatologic	Supplementation	Recurrent	Treatment	1.10	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
$\begin{gathered} \text { SKI02287 } \\ \text { USA } \end{gathered}$	Randomised Control Trial, M/W, history of NMSC living in low selenium area	(1983/1990- 1993) /408	examinations	with $200 \mu \mathrm{~g}$ selenium or placebo daily	BCC SCC	vs. placebo	Ptrend:0.2 1.14 Ptrend:0.15	
$\begin{gathered} \text { Karagas, } 1997 \\ \text { SKI02443 } \\ \text { USA } \end{gathered}$	SKICAP, Nested Case Control, Age: 35-84 years, M/W, History > 1 BCC or SCC	$\begin{gathered} 119 / \\ 349 \\ 5 \text { years } \\ \hline 131 / \\ 392 \end{gathered}$	Questionnaire every 4 months and annual dermatological examination	Plasma selenium measured using instrumental neutron activation analysis	Incidence, SCC Any SCC	$\begin{aligned} & >0.14 \mathrm{vs} . \\ & \leq 0.12 \mathrm{ppm} \end{aligned}$	$\begin{gathered} 0.67(0.35-1.29) \\ \text { Ptrend:0.25 } \\ \hline \\ 0.86(0.47-1.58) \\ \text { Ptrend:0.89 } \end{gathered}$	Age, sex, study centre (matching factors), adjusted for smoking habits
$\begin{gathered} \text { Clark, } 1996 \\ \text { SKI02483 } \\ \text { USA } \end{gathered}$	NPC, Randomised Control Trial, Age: 18-80 years, M/W, history of NMSC living in low selenium area	16/ 4.5 years of supplementation and a total of 6.4 years of followup (1983-1991)	Dermatologic examinations	Supplementation with $200 \mu \mathrm{~g}$ selenium or placebo daily	Incidence, MM	Treatment vs. placebo	$\begin{gathered} 0.92 \text { (0.34-2.45) } \\ \text { Ptrend:0.87 } \end{gathered}$	Age, sex, smoking habits
		350 (placebo), 377 (treatment)/			Incidence, BCC		$\begin{gathered} 1.10 \text { (0.95-1.28) } \\ \text { Ptrend:0.2 } \end{gathered}$	
		190 (placebo), 218 (treatment)/			SCC		$\begin{gathered} 1.14 \text { (0.93-1.39) } \\ \text { Ptrend:0.15 } \end{gathered}$	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
$\begin{gathered} \text { Breslow, } 1995 \\ \text { SKI02677 } \\ \text { USA } \end{gathered}$	Maryland USA 1974-1975, Nested Case Control, Age: 18- years, M/W	$\begin{gathered} 30 / \\ 25620 \end{gathered}$	-	Plasma selenium measured using instrumental neutron activation analysis	Incidence, MM	Q 3 vs. Q 1	0.90 (0.30-2.50)	Adjustment for smoking, education, hours since last meal did not substantially change the results
		$32 /$			BCC		0.80 (0.10-4.5)	
		37/			SCC		$\begin{gathered} 0.60(0.20-1.50) \\ \text { Ptrend:0.23 } \end{gathered}$	
$\begin{gathered} \text { Garland, } 1995 \\ \text { SKI02826 } \\ \text { USA } \end{gathered}$	NHS, Nested Case Control, Age: 30-55 years, W, nurses	63/ 62641 3.4 years	Follow-up questionnaires, death certificates	Toenail selenium	Incidence, MM	Q 3 vs. Q 1	$\begin{gathered} 1.66 \text { (0.71-3.85) } \\ \text { Ptrend:0.21 } \end{gathered}$	Smoking habits
$\begin{aligned} & \text { Knekt, } 1991 \\ & \text { SKI03576 } \\ & \text { Finland } \end{aligned}$	FMCHES, Nested Case Control, Age: 15-99 years, M/W	$\begin{aligned} & 10 / \\ & 28 \end{aligned}$	Finnish cancer registry	Serum selenium was measured using electrothermal atomic absorption spectrometric method	Incidence, MM	Per standard deviation increase	$\begin{gathered} 0.79 \\ \text { Ptrend:0.68 } \end{gathered}$	Unadjusted
Knekt, 1990b SKI22126 Finland	FMCHES, Nested Case Control, Age: 15-99 years, M/W		Finnish cancer registry	Serum selenium was measured using graphite furnace atomic absorption spectrometric method	Incidence, BCC, men	$\begin{gathered} \geq 78 \text { vs. }<49 \\ \mu \mathrm{~g} / \text { litre } \end{gathered}$	$\begin{gathered} 0.54 \\ \text { Ptrend:0.43 } \end{gathered}$	Smoking habits
		62/			Women		$\begin{gathered} 1.55 \\ \text { Ptrend:0.74 } \end{gathered}$	
		54/			Incidence, BCC, men; cases	$\geq 48 \text { vs. } \leq 49$ $\mu \mathrm{g} /$ litre	0.86 (0.35-2.12)	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
					$\begin{gathered} \text { diagnosed }>2 \\ \text { years follow-up } \end{gathered}$			
		52/			Women; cases diagnosed >2 years follow-up		1.54 (0.64-3.73)	
$\begin{gathered} \text { Peleg, } 1985 \\ \text { SKI23393 } \\ \text { USA } \end{gathered}$	Evans County Study, Nested Case Control, Age: 40- years, M/W	$\begin{gathered} 26 / \\ 2530 \end{gathered}$	Through letters, telephone and/or personal visits, confirmed by hospital records	Serum selenium was measured using neutron activation analysis	Incidence, skin cancer	-	(mean exposure)	-

5.7.6 Caffeine in diet

Cohort studies

Summary

No studies were identified in the 2005 SLR and four studies (three publications on melanoma, BCC and SCC) were identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

In the NHS and NHS II studies, a statistically significant inverse association of caffeine in diet and melanoma risk was reported, RR: $0.74,95 \% \mathrm{CI}=(0.57-0.96)$ and $\mathrm{RR}: 0.66,95 \% \mathrm{CI}=$ ($0.51-0.87$), respectively, comparing ≥ 393 vs. $<60 \mathrm{mg} /$ day ($\mathrm{Wu}, 2015 \mathrm{c}$). In the HPFS study, the association was inverse but statistically non-significant, RR: 0.94, 95\% CI= (0.75-1.20). The pooled summary estimate for men and women was $0.78,95 \% \mathrm{CI}=(0.64-0.96)$, comparing ≥ 393 vs. $<60 \mathrm{mg} /$ day ($\mathrm{Wu}, 2015 \mathrm{c}$).

Basal cell carcinoma

In an Australian cohort study, no dose-response association was observed (RR for 100 $\mathrm{mg} / \mathrm{day}: 0.96,95 \% \mathrm{CI}=0.87-1.05$) (Miura, 2014). In two North American studies, statistically significant inverse associations were reported in men (HPFS) and women (NHS), RR: $0.87,95 \% \mathrm{CI}=(0.81-0.94)$ and $\mathrm{RR}: 0.82,95 \% \mathrm{CI}=(0.77-0.86)$, respectively, comparing Q5 vs. Q1 (Song, 2012).

Squamous cell carcinoma

Associations between caffeine intake and SCC risk were inconsistent. In an Australian cohort study, no association was reported in the highest vs. lowest analysis, RR: $1.05,95 \% \mathrm{CI}=$ ($0.77-1.42$) and in continuous analysis (RR for $100 \mathrm{mg} /$ day: $0.99,95 \% \mathrm{CI}=0.87-1.12$) (Miura, 2014).

In two North American studies, no association was reported in women (NHS), RR: 1.03, 95\% $\mathrm{CI}=(0.84-1.26)$ and men, RR: $0.91,95 \% \mathrm{CI}=(0.71-1.15)$ in the highest vs. lowest analysis (Song, 2012).

Table 43 Caffeine intake and skin cancer risk. Main characteristics of studies included in the linear dose-response meta-analysis.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
$\begin{gathered} \mathrm{Wu}, 2015 \mathrm{c} \\ \text { SKI23425 } \\ \text { USA } \end{gathered}$	NHS, Prospective Cohort, Age: 30-55 years, M/W	$\begin{gathered} 841 / \\ 74666 \\ 23.6 \text { years } \end{gathered}$	Biennial followup questionnaires and medical records	Validated FFQ	Incidence, MM	$\begin{gathered} \geq 393 \text { vs. }<60 \\ \mathrm{mg} / \mathrm{day} \end{gathered}$	$\begin{gathered} 0.74 \text { (0.57-0.96) } \\ \text { Ptrend:0.04 } \end{gathered}$	Age, family history of melanoma, personal history of non-skin cancer, natural hair colour, number of moles on legs or arms, sunburn reaction as a child/adolescent, number of blistering, time spent in direct sunlight since high school, cumulative ultraviolet flux since baseline, BMI, smoking status, physical activity, total energy intake, and alcohol intake. Analyses on women further adjusted for rotating night shifts, menopausal status, postmenopausal hormone use
	NHS II Prospective Cohort, Age: 25-42 years, M/W	$\begin{gathered} 642 / \\ 89220 \\ 17.3 \text { years } \end{gathered}$					$\begin{gathered} 0.66(0.51-0.87) \\ \text { Ptrend:0.004 } \end{gathered}$	
	HPFS, Prospective Cohort, Age: 40-75 years, M/W	$\begin{gathered} 771 / \\ 39424 \\ 16.8 \text { years } \end{gathered}$					$\begin{gathered} 0.94(0.75-1.20) \\ \text { Ptrend:0.81 } \end{gathered}$	
	Pooled for men and women	2 254/					$\begin{gathered} 0.78(0.64-0.96) \\ \text { Ptrend:0.05 } \end{gathered}$	
$\begin{gathered} \text { Miura, } 2014 \\ \text { SKI23423 } \end{gathered}$	NSCS, Prospective	$\begin{gathered} 323 / \\ 1325 \end{gathered}$	Biennial followup	Validated FFQ	Incidence,	T3 vs. T1	$\begin{gathered} 0.87(0.69-1.08) \\ \text { Ptrend:0.20 } \end{gathered}$	Age, sex, tanning ability, treatment allocation, elastosis
	Age: 49.3 years,		questionnaires, histological			Per 100 mg	0.96 (0.87-1.05)	of neck, freckling back, history of skin cancer

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	M/W	196/	reports		Incidence, SCC	T3 vs. T1	$\begin{gathered} 1.05(0.77-1.42) \\ \text { Ptrend:0.79 } \end{gathered}$	Age, sex, treatment allocation, history of skin cancer, tanning ability, freckling of the back, packyear smoked
						Per 100 mg	0.99 (0.87-1.12)	
$\begin{gathered} \text { Song, } 2012 \\ \text { SKI23421 } \\ \text { USA } \end{gathered}$	NHS, Prospective Cohort, Age: 30-55 years, W	14 230/ 72921 24 years	Biennial followup questionnaires pathologically unconfirmed	Validated FFQ	Incidence, BCC	Q5 vs. Q1	$\begin{aligned} & 0.82(0.77-0.86) \\ & \text { Ptrend:<0.0001 } \end{aligned}$	
	HPFS, Prospective Cohort, Age: 40-75 years, M	8 556/ 39976 22 years					$\begin{gathered} 0.87(0.81-0.94) \\ \text { Ptrend:<0.0001 } \end{gathered}$	Age, BMI, childhood sun reaction, family history of melanoma, hair colour, history of severe sunburn, physical activity, presence of moles, smoking status, UV
	NHS, Prospective Cohort, Age: 30-55 years, W	$\begin{gathered} 1043 / \\ 72921 \\ 24 \text { years } \end{gathered}$	Biennial followup questionnaires and medical records		Incidence, SCC		$\begin{gathered} 1.03 \text { (0.84-1.26) } \\ \text { Ptrend:0.81 } \end{gathered}$	index at birth, age 15 , age 30 , history of non-skin cancer, sun exposures at different age intervals
	HPFS, Prospective Cohort, Age: 40-75						$\begin{gathered} 0.91 \text { (0.71-1.15) } \\ \text { Ptrend:0.45 } \end{gathered}$	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	years, M							
	NHS, Prospective Cohort, Age: 30-55 years, W	$\begin{gathered} 403 / \\ 72921 \\ 24 \text { years } \end{gathered}$			Incidence, MM		$\begin{gathered} 1.31(0.95-1.79) \\ \text { Ptrend:0.09 } \end{gathered}$	
	HPFS, Prospective Cohort, Age: 40-75 years, M						$\begin{gathered} 0.91(0.62-1.32) \\ \text { Ptrend:0.93 } \end{gathered}$	

6 Physical activity

6.1 Total physical activity (overall summary measures)

Cohort studies

Summary
One study (one publication on BCC, SCC) was identified in the 2005 SLR and three new studies (two publications on melanoma, BCC, and SCC) were identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

In the NIH-AARP study, a statistically significant positive association with melanoma risk was reported, RR: 1.31, $95 \% \mathrm{CI}=(1.16-1.49)$, comparing $5+$ times/week vs. never or rarely (Loftfield, 2015). Physical activity was defined as activity increasing breathing, heart rate or sweating that lasted 20 minutes or longer. In the NHS and HPFS studies, a statistically nonsignificant positive association was reported in the overall highest vs. lowest analysis, RR: $1.24,95 \% \mathrm{CI}=(0.99-1.55)$ and a statistically significant positive association in the latency analysis (10 years prior to the diagnosis), RR: 1.72, $95 \% \mathrm{CI}=(1.26-2.35)$ (Pothiawala, 2012).

Basal cell carcinoma

In a prospective cohort study of participants with significant sun damage (≥ 10 actinic keratoses), physical activity was not related with BCC (RR: 0.96, 95\% CI= 0.63-1.48), comparing exercising often vs. never (Foote, 2001). In the NHS and HPFS studies, a statistically significant positive association was reported in the highest vs. lowest analysis, RR: $1.17,95 \% \mathrm{CI}=(1.12-1.22)$ (Pothiawala, 2012).

Squamous cell carcinoma

The same study reported a statistically non-significant positive association with SCC risk, RR: $1.40,95 \% \mathrm{CI}=0.86-2.29$, comparing exercising often vs. never (Foote, 2001).). In the NHS and HPFS studies, a statistically significant positive association was reported in the highest vs. lowest analysis, RR: $1.22,95 \% \mathrm{CI}=(1.04-1.42)$ (Pothiawala, 2012).

6.1.1.1 Occupational physical activity

Cohort studies

Summary

One study (one publication on melanoma) was identified in the 2005 SLR and one study (one publication on SCC) was identified in the CUP.
No meta-analysis was conducted.

Malignant melanoma

One study identified in the 2005 SLR reported a statistically non-significant positive association, RR: $1.20,95 \% \mathrm{CI}=(0.70-2.30)$, comparing heavy manual occupational activity with sedentary (Veierod, 1997).

Squamous cell carcinoma

In an Australian cohort study, a statistically non-significant inverse association of occupational physical activity with SCC was reported in women in the person-based analysis (84 cases), RR: $0.64,95 \% \mathrm{CI}=(0.33-1.24$) and the tumour-based analysis (142 tumours), RR: $0.48,95 \% \mathrm{CI}=(0.22-1.07)$, comparing manual vs. sedentary occupational activity (Lahmann, 2011). A statistically non-significant positive association was found in men in the person-based analysis (95 cases), RR: 1.13, $95 \% \mathrm{CI}=(0.76-1.69$) and a non-significant inverse association in the tumour-based analysis (208 tumours), RR: $0.90,95 \% \mathrm{CI}=(0.53-$ 1.53) (Lahmann, 2011).

6.1.1.2 Recreational physical activity

Cohort studies
Summary
Three studies (three publications on melanoma and NMSC) were identified in the 2005 SLR and one study (one publication on SCC) was identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

One study identified in the 2005 SLR reported a statistically non-significant positive association of recreational physical activity with melanoma risk, $\mathrm{RR}: 1.60,95 \% \mathrm{CI}=(0.40-$ 7.00), comparing regular hard training vs. sedentary (Veierod, 1997). Another study on college alumni reported no association of physical activity with melanoma. RR estimates were not given in the paper (Whittemore, 1985).

Non-melanoma skin cancer

In the CCPPS study comprising three Danish cohorts, a statistically non-significant positive association was reported for men, comparing highest vs. lowest categories of moderate leisure-time physical activity, RR: $1.36,95 \% \mathrm{CI}=(0.98-1.89)$ and a significant positive association was reported with vigorous leisure-time physical activity, RR: $1.72,95 \% \mathrm{CI}=$ (1.23-2.40) (Schnohr, 2005). In women, no association was reported for moderate leisuretime physical activity, RR: $0.91,95 \% \mathrm{CI}=(0.70-1.19)$ and vigorous leisure-time physical activity, RR: $0.90,95 \% \mathrm{CI}=(0.65-1.26)$ when comparing highest vs. lowest levels (Schnohr, 2005).

Squamous cell carcinoma

In an Australian cohort study, a statistically non-significant inverse association was reported in women in person-based analysis (90 cases), RR: $0.85,95 \% \mathrm{CI}=(0.52-1.38)$ and in tumourbased analysis (149 tumours), RR: $0.76,95 \% \mathrm{CI}=(0.42-1.38)$, comparing highest vs. lowest number of hours of recreational activity (Lahmann, 2011). A statistically non-significant positive association was reported in men in the person-based analysis (98 cases), RR: 1.33, $95 \% \mathrm{CI}=(0.86-2.05)$ and in tumour-based analysis (219 tumours), RR: $1.71,95 \% \mathrm{CI}=(0.91-$ 3.21) (Lahmann, 2011). Moderate activity was statistically non-significantly inversely associated with SCC risk in women, RR: $0.66,95 \% \mathrm{CI}=(0.35-1.27)$, and not related to SCC
risk in men, $\mathrm{RR}: 1.05,95 \% \mathrm{CI}=(0.64-1.70)$, comparing highest vs. lowest categories (Lahmann, 2011). Vigorous activity was positively but statistically non-significantly associated with SCC risk in women, RR: 1.30, $95 \% \mathrm{CI}=(0.63-2.65)$, and not associated in men, $\mathrm{RR}: 1.08,95 \% \mathrm{CI}=(0.54-2.18)$, comparing highest vs. lowest categories (Lahmann, 2011).

6.1.1.4 Walking

Cohort studies

Summary

No studies were identified in the 2005 SLR and one study (one publication on SCC) was identified in the CUP.

No meta-analysis was conducted.

Squamous cell carcinoma

In the Australian cohort study, walking was not associated with SCC in women (RR: 1.06, 95\% CI=0.65-1.74, 90 cases) (Lahmann, 2011). A statistically non-significant positive association was found in men in the person-based analysis (98 cases), RR: $1.37,95 \% \mathrm{CI}=$ (0.90-2.08) and the tumour-based analysis (219 tumours), RR: 1.59, $95 \% \mathrm{CI}=(0.85-2.98)$ (Lahmann, 2011).

6.3.3 Heavy work occupation

Summary
One study (one publication on melanoma) was identified in the 2005 SLR and one study (one publication on melanoma, NMSC, BCC) was identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

A Finnish study in elite athletes reported a SIR: $0.68,95 \% \mathrm{CI}=(0.29-1.33)$ compared to the general population (Sormunen, 2014). In another Finnish study, the SIR in physical exercise teachers was 2.01, $95 \% \mathrm{CI}=(0.65-4.69)$ (Pukkala, 1993).

Non-melanoma skin cancer

A Finnish study in elite athletes reported SIR: 1.15, $95 \% \mathrm{CI}=(0.74-1.69)$ compared to the general populations (Sormunen, 2014). This paper indicated that cancer was "Skin, nonmelanoma" and the definition seems to exclude basal cell carcinoma as this type of cancer is further reported in the same paper with a higher number of cases.

Basal cell carcinoma

A Finnish study in elite athletes reported a SIR: $1.18,95 \% \mathrm{CI}=(0.99-1.39)$ compared to the general population (Sormunen, 2014).

Table 44 Physical activity and skin cancer risk. Main characteristics of identified studies.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
$\begin{gathered} \text { Loftfield, } 2015 \\ \text { SKI23424 } \\ \text { USA } \end{gathered}$	NIH-AARP, Prospective Cohort, Age: 50-71 years, M/W	$\begin{gathered} 2904 / \\ 447357 \\ 10.5 \text { years } \end{gathered}$	Cancer registry	Physical activity Questionnaire	Incidence, MM	5+/week vs. never/rarely	1.31 (1.16-1.49)	Age, sex
Sormunen, 2014 SKI23404 Finland	Finnish male athletes, Prospective Cohort, Age:55 (athletes), 53 (referents) M, Athletes that represented Finland in 1920-1965	8/ 1324 athletes, 754 referents 21 years	Cancer registry	Athletes, referents Records	Incidence, MM	SIR (athletes vs. general population)	0.68 (0.29-1.33)	
		11/				SIR (referents vs. general population)	1.60 (0.80-2.85)	
		25/			NMSC	SIR (athletes vs. general population)	1.15 (0.74-1.69)	
		11/				SIR (referents vs. general population)	1.00 (0.50-1.78)	
		126/			BCC	SIR (athletes vs. general population)	1.18 (0.99-1.39)	
		55/				SIR (referents vs. general population)	0.94 (0.71-1.22)	
$\begin{gathered} \text { Pothiawala, } \\ 2012 \\ \text { SKI23449 } \\ \text { USA } \end{gathered}$	NHS and HPFS, Prospective Cohort, M/W, Age: 30-75	-	Medical records and self-reported diagnoses confirmed by physicians	Total physical activity, interview, selfreported	Incidence, MM of skin	Highest vs. lowest	$\begin{gathered} 1.24(0.99-1.55) \\ \text { Ptrend:0.06 } \end{gathered}$	Age, sunburn reaction, family history of melanoma, number of severe
					BCC		$1.17 \text { (1.12-1.22) }$ Ptrend: <0.0001	
					SCC		1.22 (1.04-1.42)	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
					Incidence, MM of skin, 10 years prior to the diagnosis		Ptrend:0.01 1.72 (1.26-2.35) Ptrend:0.0007	sunburns, number of moles, hair colour, sun exposure at different age intervals, UV index at residence at different ages, and history of cardiovascular diseases, type 2 diabetes, and cancer
Lahmann, 2011 Australia	NSCS, Prospective Cohort, Age:25-75 years, M/W	95/1 171 16 years	Verified histologically	Occupational activity Questionnaire	Person-based incidence, SCC, men	Manual vs. sedentary	1.13 (0.76-1.69)	Age, treatment allocation, elastosis of the neck, freckling of the back and skin cancer history
		84/			Women		0.64 (0.33-1.24)	
		208 tumours/			Tumour-based incidence men		0.90 (0.53-1.53)	
		142 tumours/			Women		0.48 (0.22-1.07)	
		98/		Recreational activity	Person-based incidence, SCC, men	$\begin{gathered} >4(\mathrm{M}),>3(\mathrm{~W}) \text { vs. } \\ \leq 1.5(\mathrm{M}), \leq 1(\mathrm{~W}) \\ \text { hours/week } \end{gathered}$	$\begin{gathered} 1.33(0.86-2.05) \\ \text { Ptrend:0.14 } \end{gathered}$	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
		90/			Women		$\begin{gathered} 0.85(0.52-1.38) \\ \text { Ptrend:0.65 } \end{gathered}$	
		219 tumours/			Tumour-based incidence men		$\begin{gathered} 1.71(0.91-3.21) \\ \text { Ptrend:0.08 } \end{gathered}$	
		149 tumours/			Women		$\begin{gathered} 0.76 \text { (0.42-1.38) } \\ \text { Ptrend:0.41 } \end{gathered}$	
		98/		Moderate activity	Person-based incidence, SCC, men	$\begin{gathered} \geq 1.7(\mathrm{M}), \geq 1.5(\mathrm{~W}) \\ \text { vs. }<1.7(\mathrm{M}),<1.5 \\ (\mathrm{~W}) \text { hours/week } \end{gathered}$	$\begin{gathered} 1.05(0.64-1.70) \\ \text { Ptrend:0.87 } \end{gathered}$	
		90/			Women		$\begin{gathered} 0.66 \text { (0.35-1.27) } \\ \text { Ptrend:0.14 } \end{gathered}$	
		219/			Tumour-based incidence men		$\begin{gathered} 1.22(0.59-2.51) \\ \text { Ptrend:0.60 } \end{gathered}$	
		149/			Women		$\begin{gathered} 0.60(0.27-1.34) \\ \text { Ptrend:0.19 } \end{gathered}$	
		98/		Vigorous activity	Person-based incidence, SCC, men	$\begin{gathered} \leq 12(\mathrm{M}), \leq 8(\mathrm{~W}) \\ \text { hours/week vs. } \\ \text { none } \end{gathered}$	1.08 (0.54-2.18)	
		90/			Women		1.30 (0.63-2.65)	
		219/			Tumour-based		0.73 (0.27-1.96)	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	Copenhagen Male Study), Prospective Cohort, Age:49.3 (W), 52 (M) years, M/W	410/		Vigorous leisure-time physical activity	Men		1.72 (1.23-2.40)	smoking, education, alcohol intake
		357/			Women		0.90 (0.65-1.26)	
Foote, 2001 SKI07414 USA	Arizona, USA 1985-1992, Case Cohort Age:21-85 years, M/W, $\geq 10 \mathrm{AKs}$ on the forearms	$\begin{gathered} 144 / \\ 918 \\ 5 \text { years } \end{gathered}$	Dermatologist examination	Physical exercise Questionnaire	Incidence BCC	Often vs. never	0.96 (0.63-1.48)	Age
		105/			SCC		1.40 (0.86-2.29)	
Veierod, 1997 SKI17728 Norway	Norway 1977-1983, Prospective Cohort, Age: 16-56 years, M/W	$\begin{gathered} 108 / \\ 50757 \\ 12.4 \text { years } \end{gathered}$	Cancer registry	Occupational physical activity Questionnaire	Incidence, MM	Heavy manual vs. sedentary	$\begin{gathered} 1.20(0.70-2.30) \\ \text { Ptrend:0.68 } \end{gathered}$	Age, gender, area of residence
		108/		Recreational physical activity		Regular hard training vs. sedentary	$\begin{gathered} 1.60(0.40-7.00) \\ \text { Ptrend:0.68 } \end{gathered}$	
Pukkala, 1993 SKI03124	Finland 1967-1991, Prospective Cohort,	5/382	Cancer registry	Physically active work	Incidence, MM	SIR (PE teachers vs. general population)	2.01 (0.65-4.69)	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
Finland	Age:,			Interview	PE teachers			
	PE and languages teachers	10			Languages teachers	SIR (languages teachers vs. general population)	0.84 (0.40-1.54)	
$\begin{gathered} \text { Whittemore, } \\ 1985 \\ \text { SKI22091 } \\ \text { USA } \end{gathered}$	HPALS, Case Cohort, M/W, college alumni	/51477	Alumni offices and questionnaires	Physical activity Questionnaire	Incidence, MM		No association	-

8 Anthropometry

8.1.1 BMI

Overall summary
Thirty eight publications from 35 studies that examined body mass index (BMI) were identified. Seventeen publications were new, identified during the CUP. This included a pooled study of seven cohorts (the Vorarlberg Health Monitoring and Prevention Programme, the Oslo Study I, the Norwegian Counties Study, the Cohort of Norway and the Age 40 programme, the Malmö Preventive Project and the Västerbotten Intervention Project) (Nagel, 2012).

Dose-response meta-analyses were conducted on BMI and melanoma, non-melanoma skin cancer (NMSC), basal cell carcinoma (BCC) and squamous cell carcinoma (SCC).
Table 45 BMI and skin cancer risk. Number of studies in the CUP SLR.

	Number
Studies identified	Total: 35 (38 publications)
	29 (27 publications) melanoma risk
	13 (6 publications) NMSC risk
	9 (9 publications) BCC
	14 (8 publications) SCC risk
Studies included in forest plot of highest compared	20 (13 publications) melanoma risk
with lowest exposure	10 (3 publications) NMSC risk
	6 (5 publications) BCC
	13 (6 publications) SCC risk
Studies included in linear dose-response meta-	21 (14 publications) melanoma risk
analysis	11 (4 publications) NMSC risk
	7 (6 publications) BCC
	13 (6 publications) SCC risk
Studies included in non-linear dose-response meta-	13 (7 publications) melanoma risk
analysis	NMSC risk - not enough studies
	6 (5 publications) BCC
	12 (5 publications) SCC risk

Skin cancer

Summary

Main results:
Twenty one out of 29 (27 publications) studies identified could be included in the doseresponse meta-analysis on melanoma, 11 studies out of 13 (6 publications) on NMSC, 7 studies out of 9 (9 publications) on BCC, and 13 studies out of 14 (8 publications) on SCC.

Dose-response meta-analysis on all skin cancer was not conducted as only one study(the Harvard Alumni Health Study cohort) was identified. No association beween BMI in middleage and skin cancer mortality was reported in this study (Gray, 2012).

Malignant melanoma

BMI was not associated with melanoma risk, RR: 1.02, $95 \% \mathrm{CI}=(0.98-1.05)$. High and statistically significant heterogeneity was observed. Egger's test showed no statistical evidence of publication or small study bias. However, a Korean study (Oh, 2005) reporting a positive association was an outlier in the funnel plot. This was a large study with a low number of melanoma incident cases in men (51 cases) in which weight and height were measured at baseline.

Similar results were observed in stratified analyses, except for a positive marginal association observed in men, RR: $1.09,95 \% \mathrm{CI}=(0.99-1.19), \mathrm{I}=60 \%, 0.01$ that was driven by the Korean study (Oh, 2005). No association was observed in never smokers, summary RR for $5 \mathrm{~kg} / \mathrm{m}: 1.01,95 \% \mathrm{CI}=(0.93-1.09), \mathrm{I}: 63 \%$, p -value heterogeneity test: $0.07,3$ studies.

Eight studies were excluded from the dose-response meta-analysis. Two studies reported statistically significant increased risk of melanoma in men when comparing obese vs. nonobese war veterans (Samanic, 2004) and highest vs. lowest BMI quintile (Thune, 1993). In the same study, BMI was inversely marginally associated with melanoma risk in women (Thune, 1993). In the WHI study, the reported risk estimate was close to 1 per increment of 1 score (Heo, 2015). Three studies were on cohorts of obese people in Sweden and Denmark and the standardized incidence ratios of melanoma were estimated using as reference population those not hospitalized for obesity (in Sweden) or the general population (in Denmark). None of the studies reported statistically significant difference in melanoma risk in obese and non-obese people (Moller, 1994; Hemminki, 2011; Wolk, 2001). Two excluded studies did not provide risk estimates (Vessey, 2000; Whittemore, 1985).

Sensitivity analysis
In influence analysis, the summary RR did not change materially when each study was omitted in turn.

Nonlinear dose-response meta-analysis:
There was statistical evidence of non-linearity ($\mathrm{p}<0.001$) showing a risk increase with increasing BMI up to approximately $29 \mathrm{~kg} / \mathrm{m}^{2}$ and decrease in risk thereafter. Similar nonlinear dose-response asociation was reported in a large UK study (Bhaskaran, 2014). No other study explored the shape of the association using nonlinear models.

Non-melanoma skin cancer

BMI was statistically significantly inversely associated with NMSC risk, RR: $0.87,95 \% \mathrm{CI}=$ (0.77-0.98). High and significant heterogeneity ($\mathrm{I}^{2}: 91.6 \%$) was observed. Most studies reported inverse associations although not always statistically significant. Egger's test was not conducted due to low number of publications.

Two studies reporting standardized incidence ratios for NMSC risk were excluded from the dose-response meta-analysis. None of the two studies reported statistically significant difference of NMSC risk in obese compared to nonobese people (Moller, 1994; Wolk, 2001).

Basal cell carcinoma

BMI was statistically significantly inversely associated with BCC , RR: $0.87,95 \% \mathrm{CI}=$ (0.82 0.91). There was moderate heterogeneity that did not reach statistical significance ($\mathrm{p}=0.06$). The four larger cohort studies published in 2012 and 2015 were the only studies that reported statistically significant inverse associations (only in women in one of the studies). These studies were adjusted for several measures of UV exposure and skin reaction to sun exposure. No association was observed in two studies published in 2003 or before: one was a twinmatched nested case-control study in Finland (Milan, 2003) and in a follow-up of a small trial of vitamin A for skin cancer prevention in men with severe sun damage in Texas, USA (Foote, 2001).

Two studies were excluded from the dose-response meta-analysis. One study provided no risk estimate (McNaughton, 2005) and the other study reported statistically significant inverse association in a model not adjusted for potential confounding (Davies, 2002). In addition, the Me-Can study (Nagel, 2012) was not included as relative risk estimates were not reported due to very small numbers (55 cases); none of the associations with BCC investigated in this study reached statistical significance.

There was no statistical significant evidence of publication or small study bias.
In stratified analyses, similar summary association was found in men, RR: $0.90,95 \% \mathrm{CI}=$ (0.87-0.92) and women, RR: $0.84,95 \% \mathrm{CI}=(0.79-0.89)$.

Only in the Danish study (Praestegarrd, 2015) the inverse association was observed in women but not in men, in analyses adjusted for age, sun sensitivity, degree of freckling, number of nevi and waist circumference.

Sensitivity analyses:
The summary RR did not change materially when studies were omitted in turn in influence analysis

Nonlinear dose-response meta-analysis:
There was no evidence of non-linear association for BCC ($\mathrm{p}=0.86$).

Squamous cell carcinoma

BMI was not associated with SCC risk, RR: $0.95,95 \% \mathrm{CI}=(0.83-1.08)$. High and statistically significant heterogeneity was observed that appears to be driven by a small trial of vitamin A for skin cancer prevention in men with severe sun damage in Texas, USA (Foote, 2001) in which no association with BCC was reported (Foote, 2001). Foote, 2001 was the only study on SCC that reported positive association and was an outlier in the funnel plot High number of actinic keratoses was an inclusion criteria in the trial, and these can be an early form of SCC whereas BCCs are not thought to arise from actinic keratosis. The ratio of BCC to SCC in the study population was lower than in the general population (Foote, 2001).When this study was excluded in sensitivity analysis, the summary RR was $0.89,95 \% \mathrm{CI}=(0.81-0.97)$.

One study that reported standardized incidence ratio when comparing hospitalized obesity patients with non-hospitalized obese poeple was excluded from the dose-response metaanalysis. No difference in risk among the groups was observed (Hemminki, 2012).

Egger's test showed no evidence of publication or small study bias.
In stratified analyses, statistically significant associations were observed in women (RR: 0.81 , $95 \mathrm{CI} \%=(0.72-0.90)$ and in more adjusted studies RR: $0.87,95 \mathrm{CI} \%=(0.76-0.99)$.

Sensitivity analyses:
In influence analysis, the association ranged from $0.89,95 \% \mathrm{CI}=(0.81-0.97)$ when Foote, 2001 (9.3% weight) was omitted to $0.99,95 \% \mathrm{CI}=(0.85-1.16)$ when (Pothiawala, 2012) (22.4% weight) was omitted.

Nonlinear dose-response meta-analysis:
There was no evidence of non-linear association ($\mathrm{p}=0.07$).
Study quality:
Six studies used self-reported weight and height (Asgari, 2012; Pothiawala, 2012; Andreotti, 2010; Reeves, 2007; Freedman, 2003a). These studies were all included in the dose-response meta-analyses on melanoma, and only Pothiawala, 2012 was included in the meta-analyses on BCC and SCC. Weight and height was measured by standardised procedures in all remaining studies.

The level of adjustment for skin type and sunlight exposure varied between the studies included in the dose-response meta-analyses. In the analyses on melanoma, in seven out of 14 included publications some measure of skin sensitivity to sunlight and sunlight exposure (Tang, 2013; Pothiawala, 2012; Freedman, 2003a), sun sensitivity, degree of freckling and number of nevi (Lahmann, 2016, Praestegaard, 2015, Kvaskoff, 2014), and wearing sunscreen (Andreotti, 2010) were included in the adjustment, and in two studies, only age and sex adjusted models were shown (Loftfield, 2015; Asgari, 2012).

In the analyses on BCC, three out of six studies -those reporting inverse association - were adjusted for several indicators of UV exposure and skin sensitivity to sun exposure (Praestegaard, 2015; Gerstenblith, 2012; Pothiawala, 2012) and one study was only age adjusted (Foote, 2001). In the analyses on SCC, three out of six publications were adjusted for several indicators of UV exposure and/or skin sensitivity (Lahmann, 2016; Praestegaard,

2015, Pothiawala, 2012) and two studies were only age-adjusted (Odenbro, 2005, Foote, 2001). One study was a follow-up of vitamin A trial "moderately sun-damaged" participants having 10 or more actinic keratosis (Foote, 2001) and one study followed-up randomized controlled trial participants (Lahmann, 2016, Nambour Skin Cancer Prevention Trial). The Finish Adult Twin Cohort Study included matched twin pairs assuming they had similar sun exposure (Milan, 2003).

Two studies on NMSC (Tang, 2013, WHI; Tang, 2010, MrOS) and one study on BCC (Olsen, 2006, NSCS) included incident and prevalent cases. In the WHI study, similar risk estimate remained when participants with a history of skin cancer were excluded. In the NSCS, results did not differ substantially when 46% participants with previous history of BCC were excluded.

Table 46 BMI and skin cancer risk. Summary of the linear dose-response meta-analysis in the 2005 SLR and 2016 CUP.

	2005 SLR	CUP
Increment unit used	$5 \mathrm{~kg} / \mathrm{m}^{2}$	$5 \mathrm{~kg} / \mathrm{m}^{2}$
Malignant melanoma		
Studies (n)	1	21
Cases	51	19187
RR (95\%CI)	2.10 (1.26-3.50)	1.02 (0.98-1.05)
Heterogeneity (I^{2}, p -value)	-	$61.1 \%,<0.01$
P value Egger test	-	0.35
Non-melanoma skin cancer		
Studies (n)	-	4
Cases	-	3347
RR (95\%CI)	-	0.87 (0.77-0.98)
Heterogeneity (I^{2}, p -value)	-	92\%, <0.001
P value Egger test	-	-
Basal cell carcinoma		
Studies (n)	3*	7
Cases	343	33030
RR (95\%CI)	0.78 (0.54-1.13)	0.87 (0.82-0.91)
Heterogeneity (I^{2}, p -value)	63\%,0.04	53\%,0.06
P value Egger test	-	0.64
Squamous cell carcinoma		

Heterogeneity (I^{2}, p value)	69\%, 0.01	0\%, 0.85	82\%, <0.01
Number of cases	<500 cases	500-<1000 cases	≥ 1000 cases
Studies (n)	6	4	11
RR (95\%CI)	1.06 (0.99-1.13)	0.93 (0.81-1.07)	1.02 (0.98-1.06)
Heterogeneity (I^{2}, pvalue)	19\%, 0.29	64\%,0.06	76\%, <0.01
Publication year	≤ 2010	>2010	
Studies (n)	5	16	
RR (95\%CI)	1.08 (0.96-1.22)	1.00 (0.98-1.02)	
Heterogeneity ($\mathrm{I}^{2}, \mathrm{p}-$ value)	79\%, <0.01	16\%,0.30	
Adjusted for age, sex and some indicator of skin colour and/or sun exposure	Adjusted	Not adjusted	
Studies (n)	8	13	
RR (95\%CI)	1.03 (0.99-1.08)	1.01 (0.97-1.06)	
Heterogeneity (I^{2}, pvalue)	0\%,0.59	78\%, <0.01	
NMSC: stratified and sensitivity analysis			
Sex	Men	Women	
Studies (n)	2	2	
Cases	963	10310	
RR (95\%CI)	0.76 (0.40-1.47)	0.93 (0.89-0.96)	
Heterogeneity (I^{2}, pvalue)	63\%,0.10	5\%, 0.30	
Geographic area	Europe	North-America	
Studies (n)	9	2	
RR (95\%CI)	0.85 (0.74-0.98)	0.76 (0.41-1.41)	
Heterogeneity (I^{2}, pvalue)	86\%, <0.01	61\%,0.11	
BCC: stratified and sensitivity analysis			

Sex	Men	Women	
Studies (n)	5	5	
Cases	9777	23109	
RR (95\%CI)	0.90 (0.87-0.92)	0.84 (0.79-0.89)	
Heterogeneity ($\mathrm{I}^{2}, \mathrm{p}-$ value)	0\%, 0.79	55\%,0.06	
Geographic area	Australia	Europe	North-America
Studies (n)	1	2	4
RR (95\%CI)	0.96 (0.85-1.09)	0.89 (0.73-1.10)	0.85 (0.82-0.89)
Heterogeneity (I^{2}, pvalue)	-	77\%,0.04	40\%,0.19
Publication year	≤ 2010	>2010	
Studies (n)	2	5	
RR (95\%CI)	0.99 (0.85-1.16)	0.85 (0.81-0.90)	
Heterogeneity ($\mathrm{I}^{2}, \mathrm{p}-$ value)	0\%, 0.77	59\%,0.07	
Adjusted for age, sex and some indicator of skin colour and/or sun exposure	Adjusted	Not adjusted	
Studies (n)	6	1	
RR (95\%CI)	0.86 (0.82-0.91)	0.96 (0.72-1.28)	
Heterogeneity (I^{2}, $\mathrm{p}-$ value)	60\%,0.04	-	
SCC: stratified and sensitivity analysis			
Sex	Men	Women	
Studies (n)	11	10	
Cases	2158	1872	
RR (95\%CI)	0.94 (0.88-1.01)	0.81 (0.72-0.90)	
Heterogeneity (I^{2}, pvalue)	14\%, 0.32	33\%, 0.22	
Geographic area	Australia	Europe	North-America
Studies (n)	1	9	3

RR (95\%CI)	$1.00(0.83-1.19)$	$0.91(0.82-1.00)$	$1.16(0.56-2.38)$
Heterogeneity (I^{2}, p- value)	-	$36 \%, 0.21$	$95 \%,<0.01$
Publication year	$\mathbf{\leq 2 0 1 0}$	$\mathbf{> 2 0 1 0}$	
Studies (n)	2	11	
RR (95\%CI)	$1.26(0.73-2.18)$	$0.85(0.79-0.92)$	
Heterogeneity (I^{2}, p- value)	$90 \%,<0.01$	$31 \%, 0.23$	
Adjusted for age, sex and some indicator of skin colour and/or sun exposure	Adjusted	Not adjusted	
Studies (n)	4	9	
RR (95\%CI)	$0.87(0.76-0.99)$	$1.06(0.83-1.34)$	
Heterogeneity (I^{2}, p- value)	$52 \%, 0.13$	$87 \%,<0.01$	

* Partially adjusted studies that included some, but not all, of the following adjustment variables: age, ethnic group/skin type, or restriction of a particular ethnic group/skin type, some measure of sunlight/UV exposure, smoking (results for SCC only); Fully adjusted summary risk estimates were derived combining results for men and women using fixed effect model for BCC 1.01 (0.71-1.45) (Milan, 2003) and melanoma 0.98 (0.79-1.23) (Freedman, 2003a).
**The exact number is unclear as Bhaskaran, 2014 study did not report the number of cases by sex (total number: 8505 cases).

Table 47 BMI and malignant melanoma risk. Results of meta-analyses of prospective studies published after the 2005 SLR.

Author, Year	Number of studies	Total number of cases	Studies country, area	Outcome	Comparison	RR (95\% CI)	Heterogeneity ($\mathbf{I}^{2}, \mathbf{p}$ value)
Meta-analyses							
Sergentanis, 2013	7 cohort, 8 case-control studies (men)	4460 cases in case-control studies; 7895 cases in cohort studies (men and women combined)	Australia, USA, Canada, Italy, Greece, Denmark, UK, Sweden, Norway, Austria, Korea	Malignant melanoma	Men $\geq 25 \mathrm{~kg} / \mathrm{m}^{2}$ vs. $<25 \mathrm{~kg} / \mathrm{m}^{2}$ Cohort studies	1.30 (1.20-1.40)	24\%, 0.20
					Case-control studies	1.37 (1.17-1.60)	0\%, 0.52
					All studies	1.31 (1.22-1.41)	7\%, 0.36
	6 cohort, 10 casecontrol studies (women)				$\begin{aligned} & \text { Women } \\ & \geq 25 \mathrm{~kg} / \mathrm{m}^{2} \text { vs. }<25 \mathrm{~kg} / \mathrm{m} \\ & \text { Cohort studies } \end{aligned}$	1.13 (0.94-1.35)	$31 \%, 0.11$
					Case-control studies	0.93 (0.84-1 .03)	$31 \%, 0.14$
					All studies	0.97 (0.89-1.06)	29\%, 0.07
Renehan, 2008	6 cohort studies	3492	North America, Europe and Australia, AsiaPacific	Malignant melanoma	Per $5 \mathrm{~kg} / \mathrm{m}^{2}$ Men	1.17 (1.05-1.30)	44\%, <0.01
	5 cohort studies	4786			Women	0.96 (0.92-1.01)	0\%, 0.05

Table 48 BMI and skin cancer risk. Main characteristics of studies included in the linear dose-response meta-analysis.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
		188/			Incidence, SCC	Q4 vs. Q1	0.97 (0.69-1.35)		
		98/506			Men	$\begin{gathered} 30.6 \text { vs. } 22.3 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	1.23 (0.77-1.95)		
		90/ 665			Women	$\begin{gathered} 31 \mathrm{vs.} 21.3 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	0.78 (0.47-1.27)		
Loftfield, 2015 USA	NIH-AARP, Prospective cohort, M/W, Age: 62.6	$\begin{gathered} 2904 / \\ 447357 \\ 10.5 \text { years } \end{gathered}$	Cancer registry	Weight and height selfreported at baseline	Incidence, MM	Per $1 \mathrm{~kg} / \mathrm{m}^{2}$	1.00 (1.00-1.01)	Age, sex	RR rescaled for an increment used
Praestegaard, 2015 Denmark	DCH, Prospective cohort, M/W	$\begin{gathered} 188 / \\ 26685 \end{gathered}$	MM	Weight and height obtained by trained healthcare professionals	Incidence, MM Men	$\begin{gathered} \begin{array}{c} >28 \mathrm{vs.} \leq 24 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{array} \\ \hline \text { Per } 2 \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$1.2(0.65-2.22)$ $1.15(0.98-1.36)$	Age, sun sensitivity, degree of freckling and number of nevi, waist circumference	RRs for men and women combined using fixed effects model, RR rescaled for an increment used, number of noncases per category
		$\begin{gathered} 169 / \\ 29243 \\ 14.4 \text { years } \end{gathered}$	cases identified by linkage to the Danish Cancer Registry, whereas all NMSC		Women	$>27 \mathrm{vs} . \leq 22$ $\mathrm{~kg} / \mathrm{m}^{2}$${\mathrm{Per} 2 \mathrm{~kg} / \mathrm{m}^{2}}^{\text {Pr }}$	0.56 (0.29-1.09) $0.95(0.83-1.1)$		
		$\begin{gathered} 1671 / \\ 26685 \end{gathered}$	cases were identified through linkage to NMSC database		$\begin{gathered} \mathrm{BCC}, \\ \text { men } \end{gathered}$	$\begin{gathered} >28 \text { vs. } \leq 24 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	0.85 (0.69-1.05)		
						Per $2 \mathrm{~kg} / \mathrm{m}^{\text {² }}$	0.96 (0.9-1.01)		
		$1794 /$			Women	>27 vs. ≤ 22	0.67 (0.54-0.82)		

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
		maximum		collected at baseline and in the 1994, 2000, 2002 and 2005 questionnaires				number of naevi, number of freckles, skin sensitivity to sun exposure, physical activity, and mean UV radiation dose in countries of birth and of residence at baseline	
Tang, 2013 USA	WHI-OS, Prospective Cohort W, Age:50-79	$\begin{gathered} 386 / \\ 61657 \end{gathered}$	Self-reported cases of melanoma and NMSC were ascertained annually by questionnaire and melanoma cases were physicianadjudicated, using medical records	Measured at baseline	Incidence, MM	Obese vs. Normal	1.10 (0.95-1.28)	Age, education, smoking, skin type, sun	
	Nested case- control design	$\begin{aligned} & 9915 / \\ & 61657 \end{aligned}$			Incidence, NMSC	Obese vs. Normal	0.86 (0.80-0.91)	hormone therapy use, and sunscreen use	
$\begin{gathered} \text { Asgari, } 2012 \\ \text { USA } \end{gathered}$	VITAL, Prospective Cohort	$\begin{gathered} 553 / \\ 69635 \\ 5.84 \text { years } \end{gathered}$	SEER cancer registry, ascertained histopathologically	Self-reported	Incidence, MM	$\begin{gathered} \geq 30 \text { vs. }<25 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 0.65(0.41-0.83) \\ \text { Ptrend: <0.01 } \end{gathered}$	Age, sex	Mid-points of BMI categories

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
	Project), M/W	289866			$\mathrm{SCC},$ men	$\mathrm{kg} / \mathrm{m}^{2}$	Ptrend: 0.133	BMI and corrected for measurement error by regression calibration	
		$\begin{gathered} 286 / \\ 288834 \end{gathered}$			Women	$\begin{gathered} \geq 31.7 \text { vs. }<20.0 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 0.71 \text { (0.46-1.10) } \\ \text { Ptrend: } 0.397 \end{gathered}$		
Pothiawala, 2012 USA	NHS and HPFS, Prospective Cohort, M/W, Age: 30-75	$\begin{gathered} 966 / \\ 143129 \end{gathered}$	Medical records and self-reported diagnoses confirmed by physicians	Self-reported height and weight	$\begin{gathered} \text { Incidence, } \\ \text { MM, } \\ \text { NHS + HPFS } \end{gathered}$	$\begin{gathered} \geq 30 \text { vs. } 18-24.9 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 1.05(0.83,1.34) \\ \text { Ptrend: } 0.46 \end{gathered}$	Age, sunburn reaction, family history of melanoma, number of severe sunburns, number of moles, hair colour, sun exposure at different age intervals, UV index at residence at different ages, physical activity (quintiles), and history of cardiovascular diseases, type 2 diabetes and cancer	Person-years and non-cases per BMI category, midpoints of BMI categories.
		$\begin{gathered} 697 / \\ 102748 \end{gathered}$			HPFS	$\begin{gathered} \geq 30 \text { vs. } 18-24.9 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 0.85(0.53,1.36) \\ \text { Ptrend: } 0.50 \end{gathered}$		
		$\begin{gathered} 269 / \\ 40381 \end{gathered}$			NHS	$\begin{gathered} \geq 30 \text { vs. } 18-24.9 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 1.20(0.91,1.59) \\ \text { Ptrend: } 0.097 \end{gathered}$		
		$\begin{aligned} & 26506 / \\ & 143129 \end{aligned}$			$\begin{gathered} \mathrm{BCC}, \\ \mathrm{NHS}+\mathrm{HPFS} \end{gathered}$	$\begin{gathered} \geq 35 \mathrm{vs} .18-24.9 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 0.61(0.54,0.68) \\ \text { Ptrend: }<0001 \end{gathered}$		
		$\begin{aligned} & 7317 / \\ & 40381 \end{aligned}$			HPFS	$\begin{gathered} \geq 35 \text { vs. } 18-24.9 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 0.76(0.60,0.97) \\ \text { Ptrend: }<0001 \end{gathered}$		
		$\begin{gathered} 19 \text { 189/ } \\ 102748 \end{gathered}$			NHS	$\begin{gathered} \geq 35 \text { vs. } 18-24.9 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 0.58(0.51,0.65) \\ \text { Ptrend: }<0001 \end{gathered}$		
		$\begin{gathered} 1878 / \\ 143129 \end{gathered}$			$\begin{gathered} \text { SCC, } \\ \text { NHS + HPFS } \end{gathered}$	$\begin{gathered} \geq 35 \text { vs. } 18-24.9 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 0.56(0.36,0.88) \\ \text { Ptrend: <0001 } \end{gathered}$		
		$\begin{gathered} 1015 / \\ 40381 \end{gathered}$			HPFS	$\begin{gathered} \geq 35 \text { vs. } 18-24.9 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 0.37(0.12,1.15) \\ \text { Ptrend: } 0.088 \end{gathered}$		

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
		$\begin{gathered} 1358 / \\ 102748 \end{gathered}$			NHS	$\begin{gathered} \geq 35 \text { vs. } 18 \text { - } 24.9 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 0.68(0.42,1.11) \\ \text { Ptrend: <0001 } \end{gathered}$		
				Self-reported	Incidence,	Per $1 \mathrm{~kg} / \mathrm{m}^{2}$	1.01 (0.95-1.06)		
		125/		height and weight in questionnaire	MM, men	$\begin{gathered} 30-34.9 \text { vs. } 18.5- \\ 24.9 \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	0.97 (0.53-1.76)		
				missing values			1.03 (0.99-1.08)		
Andreotti, 2010 SKI22187 USA	Cohort, M/W, Pesticide applicators and their spouses		Populationbased state cancer registries	supplemented by the 5 -year follow-up phone interview and from the driver's licenses	Women	$\begin{aligned} & \text { Per } 1 \mathrm{~kg} / \mathrm{m}^{2} \\ & \geq 35 \mathrm{vs} .18 .5- \\ & 24.9 \mathrm{~kg} / \mathrm{m}^{2} \end{aligned}$	$1.89 \text { (0.84-4.26) }$	wear sunscreen and stratified by sex	an increment used
Tang, 2010 USA	MrOS, Nested Casecontrol, M, Age: 65-	$\begin{gathered} 178 / \\ 1441 \end{gathered}$	Ascertained through subject self-report and not histological confirmation	Measured weight and height	Incident and prevalent cases, NMSC	Per $1 \mathrm{~kg} / \mathrm{m}^{2}$	0.86 (0.73-1.02)	Adjusted for quintiles of $25(\mathrm{OH}) \mathrm{D}$, age, BMI, season of blood draw, clinic site, outdoor walking activity, and cigarette smoking	RR rescaled for an increment used
Reeves, 2007	MWS,		Registries	Self-reported	Mortality, MM	≥ 30 vs. <22.5	1.06 (0.73-1.52)	Age,	FAR continuous

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
	Cohort, Age: 14-82 years, M, Construction Industry Workers								
$\begin{gathered} \text { Oh, } 2005 \\ \text { SKI22228 } \\ \text { Korea } \end{gathered}$	KNHIC, Prospective Cohort, Age: 20- years, M, Asian	$\begin{gathered} 51 / \\ 781283 \end{gathered}$	Health screening program	Measured height and weight	Incidence, MM	$\begin{gathered} 27.0-29.9 \mathrm{vs} . \\ 23.0-24.9 \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 2.82(1.15-6.70) \\ \text { Ptrend:0.007 } \end{gathered}$	Age, alcohol consumption, area of residence, family history of specific cancer, physical activity, smoking habits	Mid-points of BMI categories
	USRT,	$48 /$ 68588 (men and women)			Incidence, MM, men	$\begin{gathered} \geq 27.5 \text { vs. } \leq 23.3 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 1.40(0.50-4.10) \\ \text { Ptrend:0.85 } \end{gathered}$	Age, sex, adult sunlight exposure,	
Freedman, 2003a SKI00519 USA	Prospective Cohort, Age: 39 years, M/W, radiologic technologists	159/	Self-reports confirmed by pathology reports and medical records	Self-reported height and weight	Women	$\begin{gathered} \geq 24.8 \text { vs. } \leq 20.4 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 0.90(0.60-1.40) \\ \text { Ptrend:0.95 } \end{gathered}$	consumption, area of residence, decade since began to work as radiological technician, educational	Person-years per BMI quantile, mid-points of BMI quantiles

\begin{tabular}{|c|c|c|c|c|c|c|c|c|c|}
\hline Author, Year, WCRF Code, Country \& Study name, characteristics \& \begin{tabular}{l}
Cases/ \\
Study size \\
Follow-up \\
(years)
\end{tabular} \& Case ascertainment \& Exposure assessment \& Outcome \& Comparison \& RR (\(\mathbf{9 5 \%}\) CI) Ptrend \& Adjustment factors \& Missing data derived for analyses \\
\hline \& \& \& \& \& \& \& \& level, hair colour, personal history of NMSC, skin pigmentation, smoking habits \& \\
\hline \[
\begin{gathered}
\text { Milan, } 2003 \\
\text { SKI00640 } \\
\text { Finland }
\end{gathered}
\] \& Finnish Adult Twin Cohort Study, Case Cohort, M/W \& \begin{tabular}{c}
\(149 /\) \\
13888 (twin \\
pairs, men, \\
women) \\
15.2 years \\
\hline \(184 /\)
\end{tabular} \& Histologically confirmed \& Self-reported height and weight \& \begin{tabular}{l}
Incidence, BCC, men \\
Women
\end{tabular} \& Per \(1 \mathrm{~kg} / \mathrm{m}^{2}\) \& \[
\begin{aligned}
\& 0.98(0.88-1.10) \\
\& \hline 1.02(0.93-1.12)
\end{aligned}
\] \& Age, ethnicity, sunlight (most twin pairs were exposed to a similar environment until the age of 16) \& RR rescaled for an increment used, RRs for men and women combined using fixed effects model \\
\hline \[
\begin{gathered}
\text { Foote, } 2001 \\
\text { SKI07414 } \\
\text { USA }
\end{gathered}
\] \& \begin{tabular}{l}
Arizona USA 1985-1992, \\
Prospective \\
Cohort, \\
Age: 21-85 \\
years, \\
M/W, \\
Moderately Sundamaged
\end{tabular} \& \(144 /\)
918
57 months
\[
106 /
\] \& Pathology reports, dermatopathologist reviewed \& Self-reported height and weight \& \begin{tabular}{l}
Incidence, BCC
\(\qquad\) \\
SCC
\end{tabular} \& \[
\begin{gathered}
\geq 28.5 \mathrm{vs} . \leq 23.3 \\
\mathrm{~kg} / \mathrm{m}^{2}
\end{gathered}
\] \& \(1.01(0.62-1.66)\)

$2.64(1.45-4.83)$ \& Age \& Mid-points of BMI categories

\hline
\end{tabular}

Table 49 BMI and skin cancer risk. Main characteristics of studies excluded from the linear dose-response meta-analysis.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	RR ($\mathbf{9 5 \%} \mathbf{C I}$) Ptrend	Adjustment factors	Reasons for exclusion
$\begin{gathered} \text { Heo, } 2015 \\ \text { SKI23437 } \\ \text { USA } \end{gathered}$	WHI, Prospective Cohort, Age: 50-79 years, W, Postmenopausal	$\begin{gathered} 1169 / \\ 144701 \\ 12 \text { years } \end{gathered}$	Self report verified by medical record and pathology report	Measured	Incidence, MM	Per 1 score	0.99 (0.92-1.06)	Age, alcohol, educational level, ethnicity, height, hormone use, randomisation, smoking	Superseded by Tang, 2013, missing data for metaanalysis
Jensen, 2012 Denmark	DHC, Prospective cohort, M/W	$\begin{gathered} \prime \\ 57054 \\ 11.4 \text { years } \end{gathered}$	Danish Cancer Registry or the Danish Registry of Pathology	Weight and height measured in clinics	Incidence, BCC Incidence, SCC	Per $1 \mathrm{~kg} / \mathrm{m}^{2}$	$0.96 \text { (0.94-0.97) }$ $0.97 \text { (0.93-1.01) }$	Unadjusted	Superseded by Praestegaard, 2015
Hemminki, 2011 Sweden	MigMed2, Prospective Cohort, M/W	$54 /$ 30020 17.7 years $35 /$ 12.2 years	Nationwide Swedish Cancer Registry	Hospital records	Incidence, MM Incidence, SCC	SIR: Familial all $1+$ All +1 All follow-up SIR: Familial all $1+$ All + 1 All follow-up	$0.88(0.66-1.15)$ $0.86(0.64-1.13)$ $0.83(0.57-1.16)$ $0.93(0.64-1.29)$ $0.92(0.63-1.28)$ $0.84(0.43-1.48)$		Excluded, SIR only

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Reasons for exclusion
Dennis, 2008 USA	AHS, Prospective Cohort, M/W, Pesticide applicators and their spouses	$\begin{gathered} 168 / \\ 44086 \end{gathered}$	Populationbased state cancer registries	Self-reported height and weight in questionnaire	Incidence, MM	$\begin{gathered} \geq 27 \text { vs. }<25 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 0.85(0.61-1.20) \\ \text { Ptrend:0.40 } \end{gathered}$	Age, sex, tendency to burn	Superseded by Andreotti, 2010
Odenbro, 2007 Sweden	SCWC, Prospective Cohort, Age: 18-67 years, M	$\begin{gathered} 1309 / \\ 339802 \\ 22.6 \text { years } \end{gathered}$	Linkage with the national Swedish cancer register	Height and weight were measured at baseline and at each follow-up examination at 2-5 year intervals	Incidence, MM	$\begin{aligned} & \geq 25 \text { vs. }<18.5- \\ & \quad<25 \mathrm{~kg} / \mathrm{m}^{2} \end{aligned}$	1.34 (1.19-1.52)	Age, birth cohort, sunlight exposure, tobacco product usage	Superseded by Samanic, 2006, only highest vs. lowest comparison
Lukanova, 2006	NSHDC, Prospective	44/ 68786 (men and women) 8.2 years		Measured by nurse, some participants had	Incidence, MM, men	$\begin{gathered} \geq 27.6 \mathrm{vs} .18 .5- \\ 23.4 \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 2.04 \text { (0.81-5.80) } \\ \text { Ptrend:0.35 } \end{gathered}$	Age, calendar	Superseded by Pooled
Sweden	Age: 29-61 years, M/W	48/		and height measurements taken on average 10 years apart	Women	$\begin{aligned} & \geq 27 \text { vs. } 18.5- \\ & 22.1 \mathrm{~kg} / \mathrm{m}^{2} \end{aligned}$	$\begin{gathered} 2.56 \text { (1.04-7.18) } \\ \text { Ptrend:0.16 } \end{gathered}$	habits	2012
Olsen, 2006 Australia	NSCS, Follow-up of a trial on skin	$\begin{gathered} 66 / \\ 1109 \end{gathered}$	All lesions clinically diagnosed as BCC	Measured weight and height at	Incidence and prevalent cases (54\% had no	$\begin{gathered} \geq 30 \text { vs. } 25 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	1.00 (0.60-1.70)	Adjusted for age, and history of	Superseded by Lahmann, 2016

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Reasons for exclusion
	cancer, Age: 25-75, M/W		were biopsied for histologic confirmation	baseline	previous history of BCC), BCC, men			BCC and eye colour	
					Women	$\begin{gathered} \geq 30 \text { vs. }<25 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	1.20 (0.70-2.10)		
McNaughton, 2005 SKI22177 Australia	NSCS, Nested Case Control, M/W	250		A physical examination was conducted in 1992 and height and weight were measured using standardised protocols	Incidence, BCC	(mean exposure)		Matched by Age, sex	Excluded, no risk estimate
Rapp, 2005	VHM\&PP, Prospective	122/ 145931 (men and women) 9.93 years	Cancer registry/	Collected by medical staff at	Incidence, MM, men	≥ 30 vs. $18.5-$	$\begin{gathered} 0.59(0.27-1.31) \\ \text { Ptrend:0.32 } \end{gathered}$	Age, occupation, smoking status	Superseded by pooled
Austria	Age: 18-94 years, M/W	$130 /$	ificates	physical examination	Women	. $9 \mathrm{~kg} / \mathrm{m}$	$\begin{gathered} 0.86 \text { (0.47-1.57) } \\ \text { Ptrend:0.72 } \end{gathered}$	Age, occupation, smoking status	2012
$\begin{gathered} \text { Samanic, } 2004 \\ \text { SKI00468 } \end{gathered}$	US Veterans Affairs, Prospective	$\begin{gathered} 4001 / \\ 4500700 \\ 12 \text { years } \end{gathered}$	Discharge records	Hospital records	Incidence, MM, white men	Obese vs. non-	1.29 (1.14-1.46)	Age, contemporary	Excluded, obese vs.
USA	Cohort, Age: 18-100	96/	Discharge records		Incidence, MM,		2.39 (1.20-4.75)	date	non-obese

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Reasons for exclusion
	years, M, War veterans				black men				
$\begin{gathered} \text { Davies, } 2002 \\ \text { SKIO0989 } \\ \text { UK } \end{gathered}$	EPIC-Norfolk, Nested Case Control, M/W	57/ 136 controls	Not stated		Incidence, BCC, men	Per $1 \mathrm{~kg} / \mathrm{m}^{2}$	$\begin{gathered} 0.927 \text { (0.869- } \\ 0.989) \end{gathered}$	-	Excluded, unadjusted results
Wolk, 2001 SKI22093 Sweden	Sweden 19651993, Prospective Cohort, Age: 46 years, M/W, obese patients	$39 /$ 28129 10.3 years	Hospital discharge registrations	Obesity diagnosis from hospital discharge files (defined as: for men $\mathrm{BMI}>30$, for women BMI>28.6)	Incidence, MM Incidence, NMSC	Obese vs. general Swedish population	$\begin{aligned} & 0.80(0.60-1.10) \\ & \hline 1.10(0.80-1.50) \end{aligned}$	-	Excluded, SIR only
Vessey, 2000 SKI17457 UK	OFPACS, Prospective Cohort, Age: 25-39 years, W, users of contraceptives	$\begin{gathered} 48 / \\ 17032 \end{gathered}$	Family planning clinic	Questionnaire	Incidence, MM	-	-	-	Excluded, no quantified result
Veierod, 1997 SKI17728 Norway	Norway 19771983, Prospective Cohort, Age: 16-56 years,	$\begin{gathered} 106 / \\ 50757 \\ 12.4 \text { years } \end{gathered}$	Health screening programme	Recorded at screening	Incidence, MM	$\begin{gathered} \geq 2.69 \text { vs. } \leq 2.25 \\ \mathrm{~g} / \mathrm{cm}^{2} \end{gathered}$	$\begin{gathered} 0.90(0.50-1.50) \\ \text { Ptrend:0.62 } \end{gathered}$	Age, area of residence	Superseded by Nagel, 2012

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Reasons for exclusion
	M/W								
Moller, 1994 SKI22085 Denmark	Denmark 19771987, Prospective Cohort, Age: 0-90 years, M/W, obese patients	$32 / /$ 37957 4.8 years 190	Hospital discharge registrations	Physical appearance of hospital patients	Incidence, MM Incidence, NMSC	Obese vs. Danish population	$1.00(0.70-1.40)$ 0.90 (0.70-1.00)	-	Excluded, SIR only
		$\begin{gathered} 2144 / \\ 1327089 \text { (men } \\ \text { and women) } \end{gathered}$		National MassRadiography Service	Incidence, MM, men	Q 5 vs. Q 1	1.26 (1.10-1.45)		
Thune, 1993 SKI15897 Norway	Norway 19631975, Prospective Cohort, Age: 30-84 years, M/W	$2814 /$	Health screening programme	height and weight of all those who participated in a tuberculosis screening program between 1963 and 1975.	Women	Q 5 vs. Q 1	0.88 (0.78-1.00)	Age, area of residence, birth cohort, height	Excluded, no BMI levels per quintiles, used in the high vs. low analysis
$\begin{gathered} \text { Whittemore, } 1985 \\ \text { SKI22091 } \\ \text { USA } \end{gathered}$	HPALS, Case Cohort, M/W, college alumni	51477	Alumni offices and questionnaires	College physical examination	Incidence, MM	-	-	-	Excluded, no risk estimate

Figure 39 RR estimates of melanoma by levels of BMI

Figure 40 RR (95% CI) of melanoma for the highest compared with the lowest level of BMI

Figure 41 Relative risk of melanoma for $5 \mathbf{k g} / \mathbf{m} 2$ increase of BMI

Figure 42 Funnel plot of studies included in the dose response meta-analysis of BMI and melanoma

Figure 43 Relative risk of melanoma for $\mathbf{5} \mathbf{~ k g} / \mathbf{m} 2$ increase of BMI, by sex

Author	Year		$\begin{aligned} & \text { per } 5 \\ & \mathrm{~kg} / \mathrm{m}^{2} \mathrm{RR}(95 \% \mathrm{Cl}) \end{aligned}$	\% Weight	Study Description
M					
Lahmann	2016		0.59 (0.22, 1.47)	0.92	NSCS
Praestegaard	2015		1.42 (0.95, 2.16)	4.29	DCH
Bhaskaran	2014		1.02 (0.97, 1.07)	26.20	CPRD
Nagel	2012		1.08 (0.96, 1.22)	19.53	Me-Can
Pothiawala	2012		0.95 (0.80, 1.13)	14.28	HPFS
Andreotti	2010		1.05 (0.77, 1.34)	8.08	AHS
Samanic	2006		1.19 (1.09, 1.30)	22.37	SCWC
Oh	2005		1.95 (1.17, 3.25)	2.92	KNHIC
Freedman	2003		0.93 (0.44, 1.98)	1.41	USRT
Subtotal (l-squared $=59.6 \%, p=0.011$)		θ	1.09 (0.99, 1.19)	100.00	
.					
W					
Lahmann	2016		1.16 (0.73, 1.84)	0.89	NSCS
Praestegaard	2015		0.88 (0.63, 1.27)	1.50	DCH
Bhaskaran	2014		0.96 (0.93, 0.99)	28.80	CPRD
Kvaskoff	2014		0.85 (0.70, 1.03)	4.33	E3N
Tang	2013		1.05 (0.98, 1.12)	18.55	WHI-OS
Nagel	2012		0.97 (0.87, 1.09)	11.10	Me-Can
Pothiawala	2012		1.10 (0.98, 1.24)	10.17	NHS
Andreotti	2010		1.16 (0.95, 1.47)	3.66	AHS
Reeves	2007		0.97 (0.91, 1.03)	19.11	MWS
Freedman	2003		0.96 (0.70, 1.30)	1.90	USRT
Subtotal (l-squared $=38.9 \%, \mathrm{p}=0.098$)			0.99 (0.95, 1.04)	100.00	
NOTE: Weights are from random effects analysis					
. 44		13.25			

Figure 44 Relative risk of melanoma for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI, by geographic location

Figure 45 Relative risk of melanoma for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI, by assessment method

Figure 46 Nonlinear dose-response meta-analysis of BMI and melanoma

P nonlinear <0.001

Table 50 Relative risk of melanoma and BMI estimated using non-linear models

BMI (kg/m²)	RR (95\%CI)
17	1.00
20	1.07 (1.05-1.08)
22.5	$1.12(1.10-1.15)$
24	$1.15(1.12-1.18)$
26	$1.17(1.14-1.21)$
27.5	$1.17(1.14-1.21)$
28.5	$1.16(1.13-1.20)$
30.8	$1.13(1.10-1.17)$
32.5	$1.11(1.08-1.14)$
37.5	$1.03(1.00-1.07)$

Figure 47 RR estimates of NMSC by levels of BMI

Figure 48 RR ($\mathbf{9 5 \%} \mathbf{~ C I}$) of NMSC for the highest compared with the lowest level of BMI

Figure 49 Relative risk of NMSC for $\mathbf{5 k g} / \mathbf{m} 2$ increase of BMI

Figure 50 Relative risk of NMSC for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI, by sex

Figure 51 Relative risk of NMSC for $5 \mathbf{k g} / \mathrm{m} 2$ increase of BMI, by geographic location

Figure 52 RR estimates of BCC by levels of BMI

Praestegaard 2015 M e－F－I T

Pothiawala 2012 M ヒーーーーーエーーーーエーーーーI

Pothiawala 2012 M／W

Pothiawala 2012 W

1	1	1	1	40
20	25	30	35	40
$\mathrm{BMI}\left(\mathrm{kg} / \mathrm{m}^{2}\right)$				

Figure 53 RR ($\mathbf{9 5 \%}$ CI) of BCC for the highest compared with the lowest level of BMI

Figure 54 Relative risk of BCC for $\mathbf{5} \mathbf{~ k g} / \mathbf{m} 2$ increase of BMI

Figure 55 Funnel plot of studies included in the dose response meta-analysis of BMI and BCC

Figure 56 Relative risk of BCC for $5 \mathbf{k g} / \mathrm{m} 2$ increase of BMI, by sex

Figure 57 Relative risk of BCC for $\mathbf{5 k g} / \mathrm{m} 2$ increase of BMI, by geographic location

Figure 58 Nonlinear dose-response meta-analysis of BMI and BCC

P nonlinear $=0.86$

Table 51 Relative risk of BCC and BMI estimated using non-linear models

BMI (kg/m²)	RR (95\%CI)
21	1.00
22.5	$0.96(0.95-0.97)$
24.5	$0.90(0.89-0.92)$
27.0	$0.84(0.81-0.87)$
29.0	$0.79(0.76-0.82)$
32.5	$0.71(0.68-0.74)$
37.5	$0.61(0.58-0.64)$

Figure 59 RR estimates of SCC by levels of BMI

Figure 60 RR ($\mathbf{9 5 \%}$ CI) of SCC for the highest compared with the lowest level of BMI
Author
Year Sex

Figure 61 Relative risk of SCC for $\mathbf{5} \mathbf{~ k g} / \mathrm{m} 2$ increase of BMI

Figure 62 Funnel plot of studies included in the dose response meta-analysis of BMI and SCC

Figure 63 Relative risk of SCC for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI, by sex

Figure 64 Relative risk of SCC for $5 \mathrm{~kg} / \mathrm{m} 2$ increase of BMI, by geographic location
Year Sex
Author
Australia
Lahmann $2016 \mathrm{M} / \mathrm{W}$
Subtotal (l-squared $=. \%$, p = .)

Figure 65 Nonlinear dose-response meta-analysis of BMI and SCC

P nonlinear $=0.07$

Table 52 Relative risk of SCC and BMI estimated using non-linear models

BMI (kg/m²)	RR (95\%CI)
20	1.04 (1.02-1.06)
21	1.00
22	0.97 (0.95-0.98)
24.1	$0.90(0.85-0.95)$
27	$0.84(0.77-0.91)$
31.7	$0.79(0.71-0.88)$
32.5	$0.79(0.70-0.88)$
37.5	$0.76(0.64-0.89)$

8.1.1 BMI in early adulthood

Cohort studies

Summary

No studies were identified in the 2005 SLR and two studies (two publications on skin cancer and melanoma) were identified in the CUP. One study on body shape at menarche and early adulthood was identified.

No meta-analysis was conducted.

Skin cancer

In the Harvard Alumni Health Study cohort, BMI at around 18 years was positively but statistically non-significantly associated with skin cancer mortality after 56.5 years of followup, on average, RR: $1.29,95 \% \mathrm{CI}=(0.96-1.75)$, per $2.56 \mathrm{~kg} / \mathrm{m}^{2}$ increase in BMI (Gray, 2012).

Malignant melanoma

In the Agricultural Health Study cohort, self-reported BMI at the age of 20 was statistically significantly positively associated with melanoma incidence later in life, RR: $2.55,95 \% \mathrm{CI}=$ (1.52-4.30), comparing BMI of $25+$ vs. $<20 \mathrm{~kg} / \mathrm{m}^{2}$ (Dennis, 2008).

In the E3N cohort study, an inverse association was observed between a large body shape at menarche and melanoma risk (RR: $0.78,95 \% \mathrm{CI}=(0.62-0.98)$ compared with lean; Ptrend $=$ 0.11), while body shapes at other ages were not associated with risk (Kvaskoff, 2014).

Table 53 BMI in early adulthood and skin cancer risk. Main characteristics of studies identified.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
Gray, 2012 USA	HAHS, Prospective Cohort, M, Age: 18.4	$\begin{gathered} 66 / \\ 15781 \\ 56.5 \text { years } \end{gathered}$	Death certificates	Measured height and weight during routine medical examination	Mortality, skin cancer, men	$\text { Per } 2.56 \mathrm{~kg} / \mathrm{m}^{2}$ $\begin{gathered} >23 \text { vs. }<20 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 1.29(0.96-1.75) \\ \hline \\ 1.60(0.65-3.94) \\ \text { Ptrend:0.25 } \end{gathered}$	Adjusted for age, cigarette smoking status and physical activity at college entry \& BMI in 1962/66
Dennis, 2008 USA	AHS, Prospective Cohort, M/W, Age: 20 Pesticide applicators and their spouses	$\begin{gathered} 168 / \\ 43567 \end{gathered}$	Cancer and death registries	Self-reported height and weight	Incidence, MM	$\begin{gathered} 25+\text { vs. }<20 \\ \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	$\begin{gathered} 2.55(1.52-4.30) \\ \text { Ptrend:<0.001 } \end{gathered}$	Age at enrolment, gender, and tendency to burn

8.1.3 Weight

Cohort studies

Summary

Five studies (five publications on melanoma, NMSC and BCC) were identified in the 2005 SLR and five new studies (5 publications on melanoma and BCC) were identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

In the E3N prospective cohort (580 cases), inverse but no association was reported in women, RR: $0.96,95 \% \mathrm{CI}=(0.78-1.17)$, comparing ≥ 63 vs. $<56 \mathrm{~kg}$ (Kvaskoff, 2014). Statistically non-significant positive association was reported in the AHS (168 cases), RR: $1.34,95 \% \mathrm{CI}=$ ($0.81-1.20$), comparing $75-150$ vs. 201-499 pounds (Dennis, 2008). Positive but statistically non-significant associations were reported in the radiologic technologists’ cohort in men and women, RR: $2.20,95 \% \mathrm{CI}=(0.80-6.10)$ and RR: $1.20,95 \% \mathrm{CI}=(0.70-$ 2.00), respectively (Freedman, 2003a). In the WHI study, weight was not related to melanoma risk, RR: 0.99, $95 \% \mathrm{CI}=$ (0.93-1.06), per increment of 1 score (Heo, 2015). Another two prospective cohort studies reported no estimates of association (Vessey, 2000; Whittemore, 1985).

Non-melanoma skin cancer

Two studies on NMSC reported no estimates of association (Schaumberg, 2004; Vessey, 2000).

Basal cell carcinoma

In the radiologic technologists' cohort, statistically significant inverse association of weight with BCC was reported in men and women, RR: $0.62,95 \% \mathrm{CI}=(0.44-0.87)$ and RR: 0.57 , $95 \% \mathrm{CI}=(0.48-0.68)$, respectively (Gerstenblith, 2012). In the Australian and the Finnish cohorts, no association was found in men, RR: 1.00, $95 \% \mathrm{CI}=(0.60-1.50)$ and RR: 1.00, 95% $\mathrm{CI}=(0.71-1.41)$, respectively (Olsen, 2006; Milan, 2003). The same studies reported statistically non-significant association in women, RR: 1.40, $95 \% \mathrm{CI}=(0.90-2.40)$ and RR: $1.09,95 \%$ CI= (0.79-1.51), respectively (Olsen, 2006; Milan, 2003).

Table 54 Weight and skin cancer risk. Main characteristics of studies identified.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
$\begin{gathered} \text { Heo, } 2015 \\ \text { SKI23437 } \\ \text { USA } \end{gathered}$	WHI, Prospective Cohort, Age: 50-79 years, W, Postmenopausal	1 169/ 144701 12 years	Self-report verified by medical record and pathology report	Measured	Incidence, MM	Per 1 score	0.99 (0.93-1.06)	Age, alcohol, educational level, ethnicity, height, hormone use, randomisation, smoking
$\begin{gathered} \text { Kvaskoff, } \\ 2014 \\ \text { SKI23428 } \\ \text { France } \end{gathered}$	E3N, Prospective Cohort, W	$\begin{gathered} 580 / \\ 91972 \end{gathered}$	Follow up questionnaires (self-report), medical record and pathology reports	Self-reported weight was available in each questionnaire	Incidence, MM	$\begin{gathered} \geq 63 \text { vs. }<56 \\ \mathrm{~cm} \end{gathered}$	0.96 (0.78-1.17)	Age, hair colour, number of freckles, number of naevi, physical activity, skin complexion, mean UV radiation dose in countries of birth and of residence, skin sensitivity to sun exposure
Gerstenblith,	USRT, Prospective	$\begin{gathered} 485 / \\ 11631 \\ 8.75 \text { years } \end{gathered}$	Self-report	Self-reported	Incidence, BCC, men	$\begin{aligned} & \geq 215 \mathrm{vs} . \\ & \leq 164 \mathrm{lbs} \end{aligned}$	$\begin{gathered} 0.62(0.44-0.87) \\ \text { Ptrend:0.01 } \end{gathered}$	Age, alcohol intake, educational level, eye colour, hair colour, household income, number of
$\begin{gathered} 2012 \\ \text { SKI23432 } \\ \text { USA } \end{gathered}$	Cohort, M/W, radiologic technologists	$\begin{gathered} 1781 / \\ 46582 \end{gathered}$	medical record and pathology report	weight from the baseline questionnaire.	Women	$\begin{aligned} & \geq 170 \mathrm{vs} . \\ & \leq 124 \mathrm{lbs} \end{aligned}$	$\begin{gathered} 0.57(0.48-0.68) \\ \text { Ptrend:<0.0001 } \end{gathered}$	dose, skin colour, tobacco use, acute and chronic reactions to sunlight, geographical measure of sun exposure (TOMS), hours outdoors in summer
Dennis, 2008 USA	AHS, Prospective	$\begin{gathered} 168 / \\ 44086 \end{gathered}$	Populationbased state	Self-reported weight in	Incidence, MM	$\begin{aligned} & \text { 201-499 vs. } \\ & 75-150 \mathrm{lbs} \end{aligned}$	$\begin{gathered} 1.34 \text { (0.81-2.20) } \\ \text { Ptrend:0.20 } \end{gathered}$	Age, sex, tendency to burn

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
	Cohort, M/W, Pesticide applicators and their spouses		cancer registries	questionnaire				
$\begin{gathered} \text { Olsen, } 2006 \\ \text { SKI23434 } \\ \text { Australia } \end{gathered}$	NSCS, Prospective Cohort, Age: 25-75 years, M/W	$\begin{gathered} 80 / \\ 650 \\ 4.5 \text { years } \end{gathered}$	Dermatologists \& pathology labs	Measured at baseline and remeasured at the end of the field trial	Incidence, BCC, women	Q 4 vs. Q 1	$\begin{gathered} 1.40(0.90-2.40) \\ \text { Ptrend:0.22 } \end{gathered}$	Age, history of BCC
		$\begin{aligned} & 76 / \\ & 486 \end{aligned}$			Men		$\begin{gathered} 1.00(0.60-1.50) \\ \text { Ptrend:0.29 } \end{gathered}$	
		80/701			Prevalence BCC, women		$\begin{gathered} 1.10 \text { (0.70-1.90) } \\ \text { Ptrend:0.14 } \end{gathered}$	Age
		87/532			Men		$\begin{gathered} 0.90(0.50-1.00) \\ \text { Ptrend:0.45 } \end{gathered}$	
Schaumberg, 2004 SKI00367 USA	PHS, Case Cohort, Age: 40-84 years, M	22071	Not stated		Incidence, NMSC	Lean vs. not lean	Ptrend:<0.001	-
$\begin{aligned} & \text { Freedman, } \\ & \text { 2003a } \\ & \text { SKI00519 } \end{aligned}$	USRT, Prospective Cohort,	$159 /$ 68588 (men and women)	Ongoing or prior study	Questionnaire	Incidence, MM, women	$\begin{aligned} & \geq 68.1 \mathrm{vs} . \\ & \leq 54.4 \mathrm{~kg} \end{aligned}$	$\begin{gathered} 1.20(0.70-2.00) \\ \text { Ptrend:0.7 } \end{gathered}$	Age, sex, adult sunlight exposure, alcohol consumption, area of residence, decade since began to

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
USA	Age: 39 years, M/W, radiologic technologists				Men	$\begin{aligned} & \geq 88.6 \mathrm{vs} . \\ & \leq 72.6 \mathrm{~kg} \end{aligned}$	$\begin{gathered} 2.20(0.80-6.10) \\ \text { Ptrend:0.14 } \end{gathered}$	work as radiological technician, educational level, hair colour, height, personal history of NMSC, skin pigmentation, smoking habits
$\begin{gathered} \text { Milan, } 2003 \\ \text { SKI00640 } \\ \text { Finland } \end{gathered}$	Finnish Adult Twin Cohort Study, Case Cohort, M/W	$\begin{gathered} 184 / \\ 13888 \\ 15.2 \text { years } \\ \hline 149 / \end{gathered}$	Histologically confirmed	Self-reported height and weight	Incidence, BCC, women Men	Per 1 kg	$\begin{aligned} & 1.09(0.79-1.51) \\ & \hline 1.00(0.71-1.41) \end{aligned}$	Age, ethnicity, sunlight (most twin pairs were exposed to a similar environment until the age of 16)
$\begin{gathered} \text { Vessey, } \\ 2000 \\ \text { SKI17457 } \\ \text { UK } \end{gathered}$	OFPACS, Prospective Cohort, Age: 25-39 years, W, users of contraceptives	$\begin{gathered} \hline 48 / \\ 17032 \\ \hline \\ 83 / \\ 17032 \end{gathered}$	Family planning clinic	Questionnaire	Incidence, MM NMSC	-	-	-
Whittemore, 1985 SKI22091 USA	HPALS, Case Cohort, M/W, college alumni	51477	Alumni offices and questionnaires	College physical examination	Incidence, MM	-	-	-

8.1.6 Change in weight

Cohort studies

Summary

No studies were identified in the 2005 SLR and two studies (two publications on melanoma and BCC) were identified in the CUP.

No meta-analysis was conducted. The few studies identified did not support an association of weight change and melanoma or BCC.

Malignant melanoma

In the VHM\&PP prospective cohort, inverse but statistically non-significant association was reported in women (RR for weight change >0.3 compared to $-0.1-<0.1 \mathrm{~kg} / \mathrm{m}^{2} / \mathrm{year}: 0.45,95 \%$ $\mathrm{CI}=0.20-1.02$) and positive but statistically non-significant association was reported in men, (RR for weight change >0.3 compared to $-0.1-<0.1 \mathrm{~kg} / \mathrm{m}^{2} /$ year: $1.25,95 \% \mathrm{CI}=0.56-2.81$) (Rapp, 2008).

Basal cell carcinoma

In an Australian cohort, no association with short term weight change was reported in men (RR for weight change $4-10 \mathrm{~kg}$ compared to $-3.9-4 \mathrm{~kg}: 1.10,95 \% \mathrm{CI}=0.60-1.90$) and women (RR for weight change $\geq 10 \mathrm{~kg}$ compared to $-3.9-4 \mathrm{~kg}: 1.70,95 \% \mathrm{CI}=0.50-5.60$) (Olsen, 2006).

8.2.1 Waist circumference

Cohort studies

Summary

No studies were identified in the 2005 SLR and four studies (four publications on melanoma, BCC and SCC) were identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

In the Danish Cohort Study, no association of melanoma risk with waist circumference was reported in men and women (RR for an increment of $5 \mathrm{~cm}: 1.06,95 \% \mathrm{CI}=0.94-1.19$, and $0.91,95 \% \mathrm{CI}=0.82-1.02$), respectively)(Praestegaard, 2015). No association was observed in the E3N, a French women cohort with self-reported anthropometric measurements (RR: 1.04, $95 \% \mathrm{CI}=0.80-1.35$, comparing ≥ 81 vs. $<73 \mathrm{~cm}$) (Kvaskoff, 2014).

Basal cell carcinoma

In the Danish Cohort Study, weight circumference was inversely related BCC (RR for an increment of $5 \mathrm{~cm}: 0.94,95 \% \mathrm{CI}=0.90-0.98$ in men and $0.96,95 \% \mathrm{CI}=0.93-0.99 \mathrm{in}$ women). Adjustment included sun sensitivity, degree of freckling, number of nevi and hip circumference (Praestegaard, 2015). No association was found when comparing highest with lowest waist circumference levels in an Australian cohort, RR: 1.00, 95% CI= 0.60-1.50 in men $1.00,95 \% \mathrm{CI}=0.80-1.40$ in women) (Olsen, 2006).

Squamous cell carcinoma

In the Danish Cohort Study, no association was reported in men, RR: $0.99,95 \% \mathrm{CI}=0.88$ 1.11 and women, RR: $1.02,95 \% \mathrm{CI}=(0.91-1.15)$, for an increment of 5 cm (Praestegaard, 2015).

8.2.2 Hip circumference

Cohort studies

Summary

No studies were identified in the 2005 SLR and two studies (two publications on melanoma, BCC and SCC) were identified in the CUP.
No meta-analysis was conducted. The few studies identified don't support an association of hip circumference and risk of melanoma or BCC. One study is suggestive of an inverse association with SCC.

Malignant melanoma

In the Danish Cohort Study, no association was reported in men, RR: $1.04,95 \% \mathrm{CI}=0.87-$ 1.24) and women, RR: $1.10,95 \% \mathrm{CI}=(0.96-1.25)$, for an increment of 5 cm (Praestegaard, 2015), and in the E3N, a French women cohort, RR: $0.95,95 \%$ CI= (0.73-1.22), when comparing ≥ 100 vs. $<94 \mathrm{~cm}$ (Kvaskoff, 2014).

Basal cell carcinoma

In the Danish Cohort Study, no association was reported in men, RR: 0.98, 95% CI= (0.921.04) and women, RR: $0.96,95 \% \mathrm{CI}=(0.92-1.00)$, for an increment of 5 cm (Praestegaard, 2015).

Squamous cell carcinoma

In the Danish Cohort Study, no association was reported in men, RR: $0.93,95 \% \mathrm{CI}=(0.78-$ 1.11) and women, RR: $0.86,95 \% \mathrm{CI}=(0.74-1.01)$, for an increment of 5 cm (Praestegaard, 2015). In the highest vs. lowest analysis, statistically significant inverse association was reported in women, RR: $0.51,95 \%$ CI= (0.27-0.96), comparing $>105 \mathrm{~cm}$ vs. $\leq 95 \mathrm{~cm}$.

8.2.3 Waist to hip ratio

Cohort studies

Summary

No studies were identified in the 2005 SLR and four studies (four publications on melanoma, BCC and SCC) were identified in the CUP.

No meta-analysis was conducted.

Malignant melanoma

No association was reported in the Danish Cohort Study, in men, RR: 1.07, 95\% CI= (0.951.21) and women, RR: $0.92,95 \% \mathrm{CI}=(0.82-1.02)$, for an increment of 0.05 unit
(Praestegaard, 2015), and in the E3N, a French women cohort, RR: 1.15, 95\% CI= ($0.88-$ 1.48), comparing ≥ 0.82 vs. <0.77 units (Kvaskoff, 2014).

Basal cell carcinoma

In the Danish Cohort Study, statistically significant inverse association was reported in men, RR: $0.93,95 \% \mathrm{CI}=(0.89-0.97)$ and in women, $\mathrm{RR}: 0.94,95 \% \mathrm{CI}=(0.91-0.98)$, for an increment of 0.05 units (Praestegaard, 2015). In the Australian cohort, waist-to-hip ratio was not associated with BCC in men, RR: $0.90,95 \% \mathrm{CI}=(0.50-1.50)$ and women, RR: $1.10,95 \%$ $\mathrm{CI}=(0.70-1.70)$ in the high vs. low comparison of two categories (Olsen, 2006).

Squamous cell carcinoma

In the Danish Cohort Study, no association was reported in men, RR: 0.97, 95% CI= (0.861.09) and women, RR: $1.01,95 \% \mathrm{CI}=(0.90-1.13)$, for an increment of 0.05 units (Praestegaard, 2015).

Table 55 Change in weight, waist circumference, hip circumference, waist to hip ratio and skin cancer risk. Main characteristics of studies identified.

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline Author, Year, WCRF Code, Country \& Study name, characteristics \& \begin{tabular}{l}
Cases/ \\
Study size Follow-up (years)
\end{tabular} \& Case ascertainment \& Exposure assessment \& Outcome \& Comparison \& RR (\(\mathbf{9 5 \%}\) CI) Ptrend \& Adjustment factors \\
\hline \[
\begin{gathered}
\text { Heo, } 2015 \\
\text { SKI23437 } \\
\text { USA }
\end{gathered}
\] \& \begin{tabular}{l}
WHI, \\
Prospective Cohort, \\
Age: 50-79 years, W, \\
Postmenopausal
\end{tabular} \& \begin{tabular}{l}
1 169/ \\
144701 \\
12 years
\end{tabular} \& Self-report verified by medical record and pathology report \& \begin{tabular}{|c}
Measured \\
Waist \\
circumference
\end{tabular}\(|\)\begin{tabular}{c}
Waist to hip \\
ratio
\end{tabular} \& \begin{tabular}{l}
Incidence, \\
MM
\end{tabular} \& Per 1 score \& 0.97 (0.91-1.04)

0.97 (0.91-1.03) \& Age, alcohol, educational level, ethnicity, height, hormone use, randomisation, smoking

\hline \multirow{7}{*}{Praestegaard, 2015 Denmark} \& \multirow{7}{*}{| DCH, |
| :--- |
| Prospective cohort, M/W |} \& \multirow[t]{4}{*}{\[

$$
\begin{gathered}
169 / 29243 \\
14.4 \text { years }
\end{gathered}
$$

\]} \& \multirow[t]{7}{*}{| MM |
| :--- |
| cases |
| identified by linkage to the Danish Cancer Registry, whereas all NMSC cases were identified through linkage to NMSC database |} \& Measured by trained healthcare professionals Waist circumference \& \multirow[t]{4}{*}{Incidence, MM, women} \& Q4 vs. Q1

Per 5 cm \& 0.73 (0.41-1.31)

0.91 (0.82-1.02) \& \multirow{7}{*}{Age, sun sensitivity, degree of freckling and number of nevi, waist circumference and hip circumference are mutually adjusted}

\hline \& \& \& \& Hip circumference \& \& Q4 vs. Q1
Per 5 cm \& 1.34 (0.76-2.36)
1.10 (0.96-1.25) \&

\hline \& \& \& \& Waist to hip \& \& Q4 vs. Q1 \& 0.76 (0.49-1.19) \&

\hline \& \& \& \& ratio \& \& Per 0.05 unit \& 0.92 (0.82-1.02) \&

\hline \& \& \multirow{3}{*}{188/26 685} \& \& Waist \& \multirow{3}{*}{Men} \& Q4 vs. Q1 \& 1.05 (0.60-1.83) \&

\hline \& \& \& \& circumference \& \& Per 5 cm \& 1.06 (0.94-1.19) \&

\hline \& \& \& \& Hip \& \& Q4 vs. Q1 \& 1.24 (0.71-2.18) \&

\hline
\end{tabular}

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
				circumference		Per 5 cm	1.04 (0.87-1.24)	
				Waist to hip		Q4 vs. Q1	1.06 (0.71-1.61)	
				ratio		Per 0.05 unit	1.07 (0.95-1.21)	
				Waist		Q4 vs. Q1	0.85 (0.72-1.01)	
				circumference		Per 5 cm	0.96 (0.93-0.99)	
		$1794 / 29$		Hip	BCC,	Q4 vs. Q1	0.86 (0.72-1.02)	
				circumference	women	Per 5 cm	0.96 (0.92-1.00)	
				Waist to hip		Q4 vs. Q1	0.88 (0.77-1.01)	
				ratio		Per 0.05 unit	0.94 (0.91-0.98)	
				Waist		Q4 vs. Q1	0.83 (0.68-1.01)	
				circumference		Per 5 cm	0.94 (0.90-0.98)	
		$1671 / 26685$		Hip	Men	Q4 vs. Q1	0.94 (0.77-1.14)	
		1671/26685		circumference		Per 5 cm	0.98 (0.92-1.04)	
				Waist to hip		Q4 vs. Q1	0.78 (0.68-0.91)	
				ratio		Per 0.05 unit	0.93 (0.89-0.97)	
		138/29 243		Waist	$\begin{gathered} \text { SCC, } \\ \text { women } \end{gathered}$	Q4 vs. Q1	0.83 (0.45-1.55)	
				circumference		Per 5 cm	1.02 (0.91-1.15)	
				Hip circumference		Q4 vs. Q1	0.51 (0.27-0.96)	
						Per 5 cm	0.86 (0.74-1.01)	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
		203/26 685		Waist to hip ratio		Q4 vs. Q1	1.06 (0.66-1.69)	
						Per 0.05 unit	1.01 (0.90-1.13)	
				Waist	Men	Q4 vs. Q1	0.72 (0.42-1.26)	
				circumference		Per 5 cm	0.99 (0.88-1.11)	
				Hip		Q4 vs. Q1	0.75 (0.43-1.31)	
				circumference		Per 5 cm	0.93 (0.78-1.11)	
				Waist to hip ratio		Q4 vs. Q1	0.79 (0.52-1.20)	
						Per 0.05 unit	0.97 (0.86-1.09)	
$\begin{gathered} \text { Kvaskoff, } \\ 2014 \\ \text { SKI23428 } \\ \text { France } \end{gathered}$	E3N, Prospective Cohort, W	$351 /$ 91972 18 years maximum	Follow up questionnaires (self-report) confirmed by medical records and pathology reports	Self-reported Waist circumference	Incidence, MM	≥ 81 vs. $<73 \mathrm{~cm}$	1.04 (0.80-1.35)	Age, hair colour, number of freckles, number of naevi, physical activity, skin complexion, mean UV radiation dose in countries of birth and of residence, skin sensitivity to sun exposure
		350/		Hip circumference		$\begin{gathered} \geq 100 \text { vs. }<94 \\ \mathrm{~cm} \end{gathered}$	0.95 (0.73-1.22)	
		349/		Waist to hip ratio		$\begin{aligned} & \geq 0.82 \text { vs. }<0.77 \\ & \text { ratio } \end{aligned}$	1.15 (0.88-1.48)	
$\begin{gathered} \text { Rapp, } 2008 \\ \text { SKI22184 } \\ \text { Austria } \end{gathered}$	VHM\&PP, Prospective cohort, Age: 42.3 years, M/W	$\begin{gathered} \text { 64/ } 36938 \\ 8 \text { years } \end{gathered}$	Cancer registry	Measured at every screening examination Weight change	Incidence, MM women	$\begin{aligned} & >0.3 \mathrm{vs} .-0.1- \\ & <0.1 \mathrm{~kg} / \mathrm{m} / \text { year } \end{aligned}$	$\begin{gathered} 0.45(0.20-1.02) \\ \text { Ptrend:0.07 } \end{gathered}$	Age, smoking status, blood glucose, occupational group and BMI at baseline
		53/28711			Men		$\begin{gathered} 1.25(0.56-2.81) \\ \text { Ptrend:0.72 } \end{gathered}$	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
Olsen, 2006 SKI23434 Australia	NSCS, Prospective Cohort, Age: 25-75 years, M/W	$\begin{gathered} 73 / 572 \\ 4.5 \text { years } \end{gathered}$	Dermatologists \& pathology labs	Measured at baseline Weight change	Incidence, BCC, women	$\begin{gathered} 4-10 \text { vs. }-4-3.9 \\ \mathrm{~kg} \end{gathered}$	$\begin{gathered} 1.30(0.80-2.30) \\ \text { Ptrend:0.62 } \end{gathered}$	Age, history of BCC, weight at baseline, hair and eye colour
		73/432			Men	$\begin{gathered} +10 \text { vs. }-4-3.9 \\ \mathrm{~kg} \end{gathered}$	$\begin{gathered} 1.70(0.50-5.60) \\ \text { Ptrend:0.63 } \end{gathered}$	
		79/ 643		Waist circumference	Women	$\begin{gathered} 80-87.9 \text { vs. }<80 \\ \mathrm{~cm} \end{gathered}$	1.00 (0.80-1.40)	Age, history of BCC, hair colour
		76/481			Men	$\begin{gathered} 102+\text { vs. }<94 \\ \text { cm } \end{gathered}$	1.00 (0.60-1.50)	
		79/ 642		Waist to hip ratio	Women	$\begin{gathered} >0.85 \text { vs. } \leq \\ 0.85 \end{gathered}$	1.10 (0.70-1.70)	Age, history of BCC
		76/481			Men	>1 vs. ≤ 1	0.90 (0.50-1.50)	

8.3.1 Height (and proxy measures)

Overall summary
Twenty-one publications examining the association of height and risk of any type of skin cancer were identified. Eighteen publications included data of 13 cohort studies on cancer incidence and 1 cohort on cancer mortality, and three publications were pooled analyses; one with 7 cohorts in cancer incidence (Me-Can project on melanoma; cohorts: Oslo, NCS, CONOR, 40-years--, VHM\&PP, VIP, MPP; Wiren, 2014), and two on mortality including 44 cohorts (Asian Pacific cohorts, Batty, 2010), and 121 cohort (ERFC, 2012) respectively. Six of the studies were identified in the 2005 SLR.

Dose-response meta-analysis was conducted to examine the association between height and risk of melanoma. The studies on mortality for malignant melanoma and height were not summarised in a dose-response meta-analysis due to overlap of study populations.

Table 56 Height and skin cancer risk. Number of studies in the CUP SLR.

	Number
Studies identified (excluding studies on mortality)	20 (19 publications)
Studies included in forest plot of highest compared with lowest exposure	3 (3 publications) melanoma risk NMSC, BCC, SCC - not enough studies
Studies included in linear dose-response meta- analysis	15 (9 publications) melanoma risk NMSC, BCC, SCC - not enough studies
Studies included in non-linear dose-response meta- analysis	Not enough studies

*Incidence only

Skin cancer

Summary
Main results:
Fifteen studies out of 18 identified studies (14 publications) on melanoma incidence could be included in the dose-response meta-analysis on melanoma, including a pooled analysis of seven cohort studies. There were not enough studies to conduct dose-response meta-analysis on other types of skin cancer.

Two studies reported on any skin cancer. Height was not associated with skin cancer incidence in men and women in one study (Sung, 2009) but it was significantly positively associated with skin cancer mortality in another study in men (Batty, 2006).

Malignant melanoma

Height was statistically significantly positively associated with melanoma, RR: 1.12, 95\% $\mathrm{CI}=(1.09-1.16)$. The data on cancer incidence from the Me-Can study (Wiren, 2014) were included in the analysis. Three studies were excluded from the dose-response meta-analysis on incidence. One study reported a statistically significant positive association in men and women (Thune, 1993) and the other two studies did not report estimates of association (Vessey, 2000; Whittemore, 1985).

Mortality from melanoma was investigated in three pooled analyses (Me-Can, Wiren, 2014; APCSC, 44 studies, Batty, 2010; ERFC, 2012). In the Me-Can, there was no association in men (246 cases), RR: 1.10, $95 \% \mathrm{CI}=0.99-1.21$, and women (102 cases), RR: $1.09,95 \%$ $\mathrm{CI}=0.92-1.29$ (Wiren, 2014). In the APCSC, the association was statistically significant and positive in men (63 cases), RR: 1.44, $95 \% \mathrm{CI}=1.15-1.79$, and there was no association in women (25 cases), RR: $1.04,95 \%$ CI=0.71-1.52 (Batty, 2010). The ERFC (679 cases) reported a statistically significant positive association, RR: 1.26, $95 \% \mathrm{CI}=(1.12-1.42)$, for an increment of 6.5 cm (ERFC, 2012).

There was statistically significant evidence of heterogeneity in the dose-response metaanalysis. Egger's test showed no statistical significant evidence of publication or small study bias. However, the funnel plot show asymmetry that was driven by a stronger than expected positive asociation in a small Norwegian study (28 cases, Lahmann, 2016).

The high heterogeneity was not explained in stratified analyses by sex, geographical region, level of adjustment, number of cases, and duration of follow-up. No heterogeneity was found in European studies and studies adjusted for age, sex and some indicator of skin colour and/or sun exposure.

Sensitivity analyses:
In influence analysis excluding one study at a time, the association ranged from 1.11 (95% CI=1.08-1.14) when Kabat, 2013a (CNBSS; 8% weight) was omitted to 1.13 ($95 \% \mathrm{CI}=1.10-$ 1.17) when Kabat, 2014 (22% weight) was omitted.

Nonlinear dose-response meta-analyses were not conducted due to low number of studies.

Non-melanoma skin cancer

No individual cohort studies investigating the association of height and risk of NMSC were identified. A pooled analysis of seven cohort studies reported a statistically significant positive association of height with NMSC in men (699 cases), RR: 1.10, 95% CI=(1.03-1.16) and women (424 cases), RR: $1.12,95 \% \mathrm{CI}=(1.04-1.22$), for an increment of 5 cm in measured height (Wiren, 2014).

Sensitivity and nonlinear dose-response meta-analyses were not conducted due to low number of studies.

Basal cell carcinoma

Two studies reported on BCC incidence (Gerstenblith, 2012; Lahmann, 2016). One study reported a statistically significant positive association in women (1 786 cases), RR: 1.64, 95\% $\mathrm{CI}=(1.40-1.93)$, and a statistically non-significant positive association in men (481 cases), RR: $1.34,95 \% \mathrm{CI}=(0.94-1.89)$, comparing highest vs. lowest quintile of self-reported height (Gerstenblith, 2012).

In a follow-up study of participants in a trial on skin cancer prevention, a statistically significant positive association was reported, RR: $1.28,95 \% \mathrm{CI}=(1.01-1.62,334$ cases), comparing highest vs. lowest quartile of measured height (Lahmann, 2016). In stratified analysis, a statistically non-significant positive association was reported in men (160 cases), RR: $1.21,95 \% \mathrm{CI}=(0.86-1.70)$ and women (174 cases), RR: $1.35,95 \% \mathrm{CI}=(0.96-1.90)$. Sensitivity and nonlinear dose-response meta-analyses were not conducted due to low number of studies.

Squamous cell carcinoma

One study investigating the association between height and risk of SCC was identified (Lahmann, 2016). No association was reported, RR: 1.11, $95 \% \mathrm{CI}=(0.78-1.58)$, comparing highest vs. lowest quartile of measured height. In stratified analysis, statistically nonsignificant positive association was reported in men (98 cases), RR: $1.53,95 \%$ CI=($0.93-$ 2.51), and non-significant inverse association was reported in women, RR: 0.80, 95% $\mathrm{CI}=(0.47-1.37)$, (90 cases).

Sensitivity and nonlinear dose-response meta-analyses were not conducted due to low number of studies.

Study quality:
Four studies used self-reported height (Kabat, 2014; Kvaskoff, 2014; Kabat, 2013a CNBSS; Walter, 2013) and all remaining studies used measured height.

Three studies adjusted for some indicator of skin colour and/or sun exposure in addition to other confounders (Lahmann, 2016; Kabat, 2014; Kvaskoff, 2014). Lahmann, 2016 adjusted for elastosis of the neck and freckling of the back, Kabat, 2014 adjusted for UV exposure and Kvaskoff, 2014 adjusted for skin and hair colour, skin sensitivity to sun exposure, number of freckles, number of naevi and mean UV radiation dose in countries of birth and residence.

One study was adjusted minimally for age, sex, and race (Walter, 2013). The pooled study of seven cohorts adjusted for date of birth, age, and stratified for sub-cohort within the model (Wiren, 2014).

Three studies included participants from randomized controlled trials (Lahmann, 2016 NSCS; Kabat, 2013b WHI; Kabat, 2013a CNBSS). The study that originated from a breast cancer screening randomised controlled trial (Kabat, 2013a CNBSS) and a follow-up study of trial participants on skin cancer (Lahmann, 2016 NSCS) reported positive associations.

Table 57 Height and melanoma risk. Summary of the linear dose-response metaanalysis in the 2005 SLR and 2016 CUP.

	2005 SLR*	CUP
Increment unit used	5 cm	
Malignant melanoma		
Studies (n)	-	15
Cases	-	13020
RR (95\%CI)	-	1.12 (1.09-1.16)
Heterogeneity ($\mathrm{I}^{2}, \mathrm{p}$-value)	-	64\%, <0.01
P value Egger test	-	0.31
Malignant Melanoma: stratified and sensitivity analysis		
Sex	Men	Women
Studies (n)	10	14
Cases	4711	7960
RR (95\%CI)	1.10 (1.05-1.15)	1.12 (1.08-1.17)
Heterogeneity (I^{2}, p-value)	45\%, 0.14	58\%, 0.02
Geographic area	Australia	Europe
Studies (n)	1	9
RR (95\%CI)	1.28 (0.97-1.71)	1.15 (1.12-1.18)
Heterogeneity ($\mathrm{I}^{2}, \mathrm{p}$-value)	-	0\%, 0.83
Geographic area	North America	
Studies (n)	5	
RR (95\%CI)	1.10 (1.06-1.14)	
Heterogeneity ($\mathrm{I}^{2}, \mathrm{p}$-value)	53\%,0.08	
Adjusted for age, sex and some indicator of skin colour and/or sun exposure	Adjusted	Not adjusted
Studies (n)	4	11
RR (95\%CI)	1.08 (1.06-1.10)	1.13 (1.09-1.18)
Heterogeneity ($\mathrm{I}^{2}, \mathrm{p}$-value)	0\%, 0.64	60\%, 0.04
Duration of follow-up	<10 years	≥ 10 years
Studies (n)	2	13

RR (95\%CI)	$1.14(1.10-1.18)$	$1.12(1.07-1.16)$
Heterogeneity (I^{2}, p-value)	$0 \%, 0.34$	$66 \%,<0.01$
Number of cases	$<\mathbf{1 0 0 0} \mathbf{c a s e s}$	$\geq \mathbf{1 0 0 0}$ cases
Studies (n)	5	10
RR (95\%CI)	$1.15(1.08-1.23)$	$1.11(1.07-1.15)$
Heterogeneity ($\mathrm{I}^{2}, \mathrm{p}$-value)	$31 \%, 0.23$	$80 \%,<0.01$

[^1]Table 58 Height and malignant melanoma cancer mortality. Results of meta-analyses of prospective studies published after the 2005 SLR.

Author, Year	Number of studies	Total number of cases	Studies country, area	Outcome	Comparison	RR (95\%CI)	Heterogeneity ($\mathbf{I}^{2}, \mathbf{p}$ value)
Meta-analyses					-		
Pooled-analyses							
Me-Can Wiren, 2014	7 prospective cohorts	246	Austria, Norway, Sweden	Mortality, melanoma, men	Per 5 cm	1.10 (0.99-1.21)	
		102		Women		1.09 (0.92-1.29)	
ERFC, 2012	121 prospective cohorts	679	Worldwide	Mortality, melanoma	Per 6.5 cm	1.26 (1.12-1.42)	43\%
Batty, 2010	44 prospective cohorts		Asia Pacific	Mortality, melanoma, men	Per 6 cm	1.44 (1.15-1.79)	
		25		Women		1.04 (0.71-1.52)	-

Table 59 Height and skin cancer risk. Main characteristics of studies included in the linear dose-response meta-analysis.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
Lahmann, 2016 SKI23471 Australia	NSCS, Follow-up of a trial on skin cancer, Age: 25-75, M/W	$\begin{gathered} 28 / \\ 1171 \\ 14.4 \text { years } \end{gathered}$	Cancer registry (melanoma), BCC and SCC were verified histologically	Height measured at baseline	Incidence, MM	Per 5 cm	1.28 (0.97-1.71)	Age, treatment allocation, BCC/SCC history, elastosis of the neck, freckling of the back, smoking status	RR rescaled to 5 cm increment
		11/			Men		1.55 (0.97-2.47)		
		17/			Women		1.12 (0.76-1.64)		
		334/			Incidence, BCC	Q4 vs. Q1	$\begin{gathered} 1.28(1.01-1.62) \\ \text { Ptrend:0.015 } \end{gathered}$		Mid-points of exposure categories
		160/506			Men	$\begin{aligned} & \geq 179.9 \text { vs. }<170.9 \\ & \text { cm } \end{aligned}$	1.21 (0.86-1.70)		
		174/665			Women	$\begin{gathered} \geq 166.5 \mathrm{vs} .<158 \\ \mathrm{~cm} \end{gathered}$	1.35 (0.96-1.90)		
		188/			Incidence, SCC	Q4 vs. Q1	1.11 (0.78-1.58)		
		98/ 506			Men	$\begin{aligned} & \geq 179.9 \text { vs. }<170.9 \\ & \text { cm } \end{aligned}$	1.53 (0.93-2.51)		
		90/ 665			Women	$\begin{gathered} \geq 166.5 \mathrm{vs} .<158 \\ \mathrm{~cm} \end{gathered}$	0.80 (0.47-1.37)		
$\begin{gathered} \text { Kabat, } 2014 \\ \text { SKI23403 } \\ \text { USA } \end{gathered}$	NIH-AARP, Prospective Cohort, Age: 50-71 years, M/W,	$\begin{gathered} 3556 / \\ 288683 \\ 10.5 \text { years } \end{gathered}$	Cancer registry and national death index	Self-reported height	Incidence, MM, men	Per 10 cm	1.18 (1.13-1.23)	Age, BMI, educational level, race, smoking, UV exposure [ground level dose in residence place]	RRs rescaled to 5 cm increment RRs for men and women combined
		$1224 /$			Women		1.14 (1.05-1.24)	Additionally adjusted for	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
	Retired	192514 10.5 years						age at menarche	using fixed effects model
$\begin{gathered} \text { Kvaskoff, } \\ 2014 \\ \text { SKI23428 } \\ \text { France } \end{gathered}$	E3N, Prospective Cohort, W	588/ 91972 18 years maximum	Follow up questionnaires (self-report) confirmed by medical records and pathology reports	Self-reported height	Incidence, MM	≥ 164 vs. $\leq 159 \mathrm{~cm}$	1.18 (0.97-1.44)	Age, hair colour, number of freckles, number of naevi, physical activity, skin complexion, mean UV radiation dose in countries of birth and of residence, skin sensitivity to sun exposure	Mid-points of exposure categories
Wiren, 2014 Austria, Norway, Sweden	Me-Can, Pooled analysis of seven prospective cohorts (Oslo, NCS, CONOR, 40-y, VIP, MPP, VHM\&PP)	$\begin{gathered} 1096 / \\ 288772 \\ 12.7 \text { years } \end{gathered}$	Cancer registries	Measured height	Incidence, MM, men	Per 5 cm	1.13 (1.08-1.19)	Date of birth, age and stratified for sub-cohort within the model	RRs for men and women combined using fixed effects model
		$\begin{gathered} 893 / \\ 297156 \\ 12.7 \text { years } \\ \hline \end{gathered}$			Women		1.17 (1.11-1.24)		
		699			Incidence, NMSC, men		1.10 (1.03-1.16)		
		424			Women		1.12 (1.04-1.22)		
		246			Mortality, MM, men		1.10 (0.99-1.21)		Dose-response meta-analysis on mortality
		102			Women		1.09 (0.92-1.29)		was not conducted

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
$\begin{gathered} \text { Kabat, 2013a } \\ \text { SKI22182 } \\ \text { Canada } \end{gathered}$	CNBSS, Prospective Cohort, Age: 40-59 years, W	$\begin{gathered} 327 / \\ 88256 \\ 16.2 \text { years } \end{gathered}$	Record linkages to cancer database and the national mortality database	Measured height	Incidence, MM	Per 10 cm	1.51 (1.27-1.80)	Age at baseline, menopausal status, years of education, BMI	RR rescaled to 5 cm increment
$\begin{gathered} \text { Kabat, 2013b } \\ \text { SKI23430 } \\ \text { USA } \end{gathered}$	WHI, Prospective Cohort, Age: 50-79 years, W	$\begin{gathered} 1169 / \\ 144701 \\ 12 \text { years } \end{gathered}$	Self-report verified by medical records and pathology reports	Measured height	Incidence, MM	Per 10 cm	1.15 (1.04-1.26)	Age, alcohol, BMI, educational level, ethnicity, hormone replacement therapy, pack-years, randomisation, smoking status	RR rescaled to 5 cm increment
$\begin{gathered} \text { Walter, } 2013 \\ \text { SKI23431 } \\ \text { USA } \end{gathered}$	VITAL, Prospective Cohort, Age: 50-76 years, M/W	349/ 65038 7.3 years	Cancer registry	Self-reported height	Incidence, MM	Per 5 inches	1.28 (1.05-1.55)	Age, sex, race	RR rescaled to 5 cm increment
$\begin{gathered} \text { Green, } 2011 \\ \text { SKI23433 } \\ \text { UK } \end{gathered}$	MWS, Prospective Cohort, Age: 56.1 years,	$\begin{gathered} 3583 / \\ 1297124 \\ 9.4 \text { years } \end{gathered}$	Cancer registry	Measured height	Incidence, MM	Per 10 cm	1.32 (1.22-1.42)	Age, age at first child, age at menarche, alcohol intake, BMI, parity, region, smoking status, socio-economic status, strenuous exercise	RRs rescaled for an increment used
		1943/			Never		1.34 (1.20-1.49)	Age, region,	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Missing data derived for analyses
		478/			smokers Current smokers		1.31 (1.06-1.61)	socioeconomic status, alcohol intake, BMI, strenuous exercise, age at menarche, parity, age at first birth	
$\begin{gathered} \text { Sung, } 2009 \\ \text { SKI22178 } \\ \text { Korea } \end{gathered}$	KNHIC, Prospective Cohort, Age: 40-64 years, M/W, middle-class adults	$\begin{gathered} 334 / \\ 449214 \\ 8.72 \text { years } \end{gathered}$	Linkage with cancer registry, national health insurance and death report	Measured height	Incidence, skin cancer, men	Per 5 cm $\geq 171.1 \text { vs. } \leq 164.5$	$\begin{aligned} & 1.10(0.99-1.22) \\ & 1.41(1.05-1.91) \end{aligned}$	Age, BMI, cigarette smoking, alcohol consumption, regular exercise, area of residence, monthly salary level, occupation	
						Per 5 cm	1.12 (0.97-1.29)	Age, BMI, cigarette smoking, alcohol	
		8.72 years			women	≥ 158.1 vs. ≤ 151	1.42 (0.96-2.12)	age at first childbirth, menopausal status, oestrogen replacement, use of OC	
Freedman, 2003a SKI00519 USA	USRT, Prospective Cohort, Age: 39 years,	$\begin{gathered} 207 / \\ 68588 \\ 698028 \\ \text { person-years } \end{gathered}$	Self-report verified by medical record and pathology	Self-reported height	Incidence, MM,	-	-	Age, sex, adult sunlight exposure, alcohol consumption, area of residence, decade since	Persons-at risk and mid-points per exposure category;

Table 60 Height and skin cancer risk. Main characteristics of studies excluded from the linear dose-response meta-analysis.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Reasons for exclusion
$\begin{gathered} \text { Yang, } 2014 \\ \text { SKI23429 } \\ \text { UK } \end{gathered}$	MWS, Prospective Cohort, Age: 50-64 years, W	$\begin{gathered} 1795 / \\ 453023 \\ 9.2 \text { years } \end{gathered}$	Cancer registry	Measured height	Incidence, MM	$\begin{aligned} & \geq 170 \mathrm{vs} . \\ & \leq 154 \mathrm{~cm} \end{aligned}$	$\begin{gathered} \mathrm{RR}(99 \% \mathrm{CI}) \\ 1.18(1.04-1.33) \end{gathered}$	Age, year of birth, region of residence, socioeconomic status, having been breast fed as an infant, maternal smoking during pregnancy, maternal height, paternal height, age at menarche, parity, age had first baby, use of MHT, BMI, strenuous exercise, alcohol consumption, birth weight, smoking	Superseded by Green, 2011
The Emerging Risk Factor Collaboration, 2012	121 prospective studies, M/W	$\begin{gathered} 679 / \\ 1085949 \end{gathered}$		Measured for 81% and selfreported for 19\%	Mortality, MM	Per 6.5 cm	1.26 (1.12-1.42)	Age, sex, smoking and year of birth	Dose-response meta-analysis on mortality not conducted. Overlapping other studies

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison		$\begin{aligned} & (95 \% \mathrm{CI}) \\ & \text { Ptrend } \end{aligned}$	Adjustment factors	Reasons for exclusion
Batty, 2006 SKI22199 UK	Whitehall study, Prospective Cohort, Age: 40-64 years, M	$\begin{gathered} 42 / \\ 17353 \\ 35 \text { years } \end{gathered}$	National cancer registers	Measured height	Mortality, skin cancer men	Per 5 cm $\begin{gathered} \geq 181 \text { vs. } \leq 170 . \\ \text { cm } \end{gathered}$		$\begin{gathered} 1.35(1.06-1.70) \\ 7.27(1.64-32.30) \\ \text { Ptrend:0.02 } \end{gathered}$	BMI, cholesterol, diabetes, disease at baseline, glucose intolerance, marital status, physical activity, smoking habits, systolic blood pressure, triceps skinfold thickness	Dose-response meta-analysis was not conducted
Milan, 2003 SKI00640 Finland	Finnish Adult Twin Cohort Study, Case Cohort, M/W	$184 /$ 13888 15.2 years $149 /$	Finnish Cancer Registry database	Questionnaire	Incidence, BCC, women Men	Per 1 SD	$\frac{1.11}{1.21}$	$\begin{aligned} & 0.49-2.48) \\ & 0.66-2.21) \end{aligned}$	Age, ethnicity, sunlight	Excluded, exposure increment in not given
Vessey, 2000 SKI17457 UK	OFPACS, Prospective Cohort, Age: 25-39 years, W, users of contraceptives	17032	Family planning clinic		Incidence, \qquad Incidence, NMSC	-		-	-	Excluded, no risk estimate
Veierod, 1997 SKI17728 Norway	NCS, Prospective Cohort, Age: 16-56 years, M/W	$\begin{gathered} 106 / \\ 50757 \\ 12.4 \text { years } \end{gathered}$	Cancer Registry of Norway	Measured height	Incidence, MM	$\begin{aligned} & \geq 177 \text { vs. } \\ & \leq 163 \mathrm{~cm} \end{aligned}$		$\begin{aligned} & (1.40-6.70) \\ & \text { rend:<0.01 } \end{aligned}$	Age, sex, area of residence	Superseded by Pooled study Wiren, 2014

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{aligned} & \text { RR }(95 \% \text { CI) } \\ & \text { Ptrend } \end{aligned}$	Adjustment factors	Reasons for exclusion
	NSPT, Prospective	$\begin{gathered} 2814 / \\ 697647 \end{gathered}$			Incidence, MM, women		1.59 (1.41-1.79)		Excluded, height in each quantile
SKI15897 Norway	Cohort, Age: 30-84 years, M/W	$\begin{gathered} 2144 / \\ 629442 \end{gathered}$	Cancer Registry of Norway	Measured height	Men	Q 5 vs. Q 1	1.60 (1.39-1.84)	Age, area of residence, BMI, birth cohort	used in the highest vs. lowest comparison
$\begin{gathered} \text { Whittemore, } \\ 1985 \\ \text { SKI22091 } \\ \text { USA } \end{gathered}$	HPALS, Case Cohort, M/W, college alumni	$\begin{gathered} 104 / \\ 51977 \end{gathered}$	Alumni offices and questionnaires	Measured height	Incidence, MM	-	-	-	Excluded, no risk estimate

Figure 66 RR estimates of melanoma by levels of height

Kvaskoff 2014 W or

1	1	1	1	190
	160	170	180	190
	Height (cm)			

Figure 67 RR (95% CI) of melanoma for the highest compared with the lowest level of height

Figure 68 Relative risk of melanoma for 5 cm increase of height

Figure 69 Funnel plot of studies included in the dose response meta-analysis of height and melanoma

Figure 70 Relative risk of melanoma for 5 cm increase of height, by sex

Figure 71 Relative risk of melanoma for 5 cm increase of height, by geographic location

8.4.1 Birthweight

Cohort studies

Summary

One study (one publication on melanoma) was identified in the 2005 SLR and five new studies (five publications on melanoma) were identified in the CUP.

Dose-response meta-analysis to examine association of birthweight and cutaneous melanoma was conducted.

Table 61 Birthweight and melanoma risk. Number of studies in the CUP SLR.

	Number
Studies identified	6 (6 publications)
Studies included in forest plot of highest compared with lowest exposure	3 (3 publications) melanoma risk NMSC, BCC, SCC risk - no studies
Studies included in linear dose-response meta- analysis	5 (5 publications) melanoma risk NMSC, BCC, SCC risk - no studies
Studies included in non-linear dose-response meta- analysis	Not enough studies

Cutaneous malignant melanoma

Summary
Main results:
Five studies out of 6 (6 publications) identified could be included in the dose-response metaanalysis on melanoma. A statistically significant positive association was observed (RR for 500 g increment: $1.06,95 \% \mathrm{CI}=1.02-1.10$). There was no evidence of heterogeneity, publication or small study bias.

One study was excluded from the dose-response meta-analysis. The study reported a statistically non-significant positive association comparing high birth weight, >90 percentile of 4080 vs. no (Olesen, 2009).

Stratified analyses were limited by low number of studies.
Sensitivity analyses:
The summary RR did not change materially when studies were omitted in turn in influence analysis. The association ranged from 1.05 ($95 \% \mathrm{CI}=1.00-1.10$) when Ahlgren, 2007 (35\% weight) was omitted to 1.07 ($95 \% \mathrm{CI}=1.02-1.11$) when (Spracklen, 2014) (21% weight) was omitted.

Nonlinear dose-response meta-analysis:

Nonlinear dose-response meta-analysis was not conducted due to low number of studies. Study quality:

Two studies used self-reported birthweight (Spracklen, 2014; Yang, 2014).
One study adjusted only for age and calendar period (Ahlgren 2007) and all other studies used multivariate models. However, none of the studies adjusted for some indicator of skin colour and/or sun exposure.

Table 62 Birthweight and skin cancer risk. Summary of the linear dose-response metaanalysis in the 2005 SLR and 2016 CUP.

	2005 SLR*	CUP
Increment unit used	500 g	
Malignant melanoma		
Studies (n)	-	5
Cases	-	3561
RR (95\%CI)	-	$1.06(1.02-1.10)$
Heterogeneity (I ${ }^{2}$, p-value)	-	$0 \%, 0.92$
P value Egger test	-	0.49

Malignant Melanoma: stratified and sensitivity analysis		
Sex	Men	Women
Studies (n)	-	2
Cases	-	2361
RR (95\%CI)	-	$1.05(0.99-1.11)$
Heterogeneity (I², p-value)	-	$0 \%, 0.54$
Geographic area	Europe	North America
Studies (n)	4	1
RR (95\%CI)	$1.07(1.02-1.11)$	$1.02(0.94-1.12)$
Heterogeneity (I2, p-value)	$0 \%, 0.96$	-
Adjusted for age, sex and some indicator of skin colour and/or sun exposure	Adjusted	Not adjusted
Studies (n)		5
RR (95\%CI)	-	$1.06(1.02-1.10)$
Heterogeneity (I2, p-value)	-	$0 \%, 0.92$

Birthweight	Self-reported	Measured/from records
Studies (n)	2	3
RR $(95 \% \mathrm{CI})$	$1.05(0.99-1.11)$	$1.07(1.01-1.13)$
Heterogeneity $\left(\mathrm{I}^{2}\right.$, p-value)	$0 \%, 0.54$	$0 \%, 0.86$

*Dose-response meta-analysis was not conducted in the 2005 SLR.

Table 63 Birthweight and malignant melanoma risk. Results of meta-analyses of prospective studies published after the 2005 SLR.
$\left.\begin{array}{|l|l|l|l|l|l|l|}\hline \text { Author, Year } & \begin{array}{c}\text { Number of } \\ \text { studies }\end{array} & \begin{array}{c}\text { Total } \\ \text { number of } \\ \text { cases }\end{array} & \begin{array}{c}\text { Studies country, } \\ \text { area }\end{array} & \text { Outcome } & \text { Comparison } & \text { RR (95\% CI) }\end{array} \begin{array}{c}\text { Heterogeneity } \\ \left(\mathbf{I}^{2}, \mathbf{p} \text { value) }\right.\end{array}\right]$
*The five cohort studies identified were included in the present review.

Table 64 Birthweight and skin cancer risk. Main characteristics of studies identified.

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Inclusion/ exclusion
$\begin{gathered} \text { Spracklen, } \\ 2014 \\ \text { SKI22202 } \\ \text { USA } \end{gathered}$	WHI-OS, Prospective Cohort, Age: 50-79 years, W	$\begin{gathered} 566 / \\ 56526 \end{gathered}$	Self-report verified by medical record	Selfreported birthweight	Incidence, MM	$\begin{gathered} \geq 10 \text { vs. }<6 \\ \text { lbs } \end{gathered}$	$\begin{gathered} 1.05 \text { (0.66-1.67) } \\ \text { Ptrend:0.37 } \end{gathered}$	Age, alcohol, BMI, educational level, race, smoking status, socioeconomic status	Mid-points of exposure categories
$\begin{gathered} \text { Yang, } 2014 \\ \text { SKI23429 } \\ \text { UK } \end{gathered}$	MWS, Prospective Cohort, Age: 50-64	$\begin{gathered} \hline 1795 / \\ 453023 \\ 9.2 \text { years } \\ \hline 821 / \end{gathered}$	Cancer registry	Selfreported birthweight	Incidence, $\begin{gathered} \text { MM } \\ \hline<25 \mathrm{~kg} / \mathrm{m}^{2} \end{gathered}$	Per 1 kg	$1.13(0.97-1.32)$ $1.28(1.01-1.63)$	Age, age at first child, age at menarche, alcohol consumption, BMI, height, parity, region, smoking,	RR rescaled for an increment of 500 g

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \mathrm{CI}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Inclusion/ exclusion
	years, W	857/			$\begin{aligned} & 25.0+ \\ & \mathrm{kg} / \mathrm{m}^{2} \end{aligned}$		1.03 (0.83-1.29)	socio-economic status, strenuous exercise, use of HRT, year of birth, having been breastfed as an infant, maternal height, maternal smoking during pregnancy, paternal height	
$\begin{gathered} \text { O'Rorke, } \\ 2013 \end{gathered}$	Northern Ireland Birth and Cancer	76	ancer	Child Health	Incidence,	$\begin{gathered} 4500-6000 \\ \text { vs. } 3000- \\ 3499 \mathrm{~g} \end{gathered}$	1.60 (0.74-3.40)	Sex, year of birth, gestational age, number of previous miscarriages, breast	
Northern Ireland	Case-cohort study, M/W	440612	y	base		Per 500 g	1.08 (0.97-1.21)	delivery, maternal age at birth, birth order and social class.	Nothing estimated
Olesen, 2009 Denmark	Danish Birth and Cancer Registries, Retrospective Cohort, M/W, born between 1950 and 2002 - nationwide	$\begin{gathered} 296 / \\ 2594783 \end{gathered}$	Danish cancer registry	Hospital and birth records	Incidence, MM	High birth weight >90 percentile of 4 080g (19732002) vs. no	1.19 (0.63-2.26)	Sex, age, calendar period, multiple birth, family size, sibling order, age of mother at birth of the child, age of the mother at first birth, family history of cutaneous malignant melanoma	Excluded, only two levels of exposure, used in the high vs. low analysis
Ahlgren, 2007	Danish Birth and Cancer	$\begin{gathered} 847 / \\ 217329 \end{gathered}$	Danish cancer registry	School health records	Incidence, MM	$\begin{gathered} 4500-5999 \text { vs. } \\ 3000-3499 \mathrm{~g} \\ \hline \end{gathered}$	1.02	Age, calendar period	
						Per 1000 g	$1.14(1.00-1.31)$		RR rescaled for

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size Follow-up (years)	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(95 \% \text { CI }) \\ \text { Ptrend } \end{gathered}$	Adjustment factors	Inclusion/ exclusion
Denmark	Prospective Cohort, M/W, born between 1930 and 1975 in Copenhagen municipality	person- years							an increment of 500 g
$\begin{gathered} \text { McCormack, } \\ 2005 \\ \text { Sweden } \end{gathered}$	UBCoS, Prospective Cohort, Age: 31-45 years, M/W, Birth cohort	77/ 11166 41 years	Cancer registry/ population register	All measurements made at birth by hospital staff recorded as obstetric notes	Incidence, MM, men	Per 502 g (men) and 498g (women)	1.01 (0.82-1.26)	Sex, birth order, gestational age, marital status, occupation, socio-economic status	Weighted average birthweight

Figure 72 RR estimates of melanoma by levels of birthweight

Figure 73 RR (95% CI) of melanoma for the highest compared with the lowest birthweight

Figure 74 Relative risk of melanoma for 500 g increase of birthweight

Figure 75 Funnel plot of studies included in the dose response meta-analysis of birthweight

Figure 76 Relative risk of melanoma for 500 g increase of birthweight, by sex

			per 500 g	\%	Study
Author	Year	Sex	RR (95\% CI)	Weight	Description
W					
Spracklen	2014	W	1.02 (0.94, 1.12)	43.32	WHI
Yang	2014	W	1.06 (0.98, 1.15)	56.68	MWS
Subtotal (l-squared $=0.0 \%, \mathrm{p}=0.537$)			1.05 (0.99, 1.11)	100.00	
NOTE: Weights are from random effects analysis					

Figure 77 Relative risk of melanoma for $\mathbf{5 0 0 g}$ increase of birthweight, by geographic location

References

1. MRC/BHF Heart Protection Study of antioxidant vitamin supplementation in 20,536 high-risk individuals: a randomised placebo-controlled trial. Lancet 2002 Jul 6;360:23-33.
2. Adult height and the risk of cause-specific death and vascular morbidity in 1 million people: individual participant meta-analysis. The Emerging Risk Factors Collaboration. Int J Epidemiol 2012 Oct 9;41:1419-33.
3. Adami HO, McLaughlin JK, Hsing AW, Wolk A, Ekbom A, Holmberg L, et al. Alcoholism and cancer risk: a population-based cohort study. Cancer Causes Control 1992 Sep 22;3:419-25.
4. Afzal S, Nordestgaard BG, Bojesen SE. Plasma 25-hydroxyvitamin D and risk of non-melanoma and melanoma skin cancer: a prospective cohort study. J Invest Dermatol 2013 Mar 12;133:629-36.
5. Ahlgren M, Wohlfahrt J, Olsen LW, Sorensen TIA, Melbye M. Birth weight and risk of cancer. Cancer 2007 Jul 15;110:412-9.
6. Algotar AM, Stratton MS, Ahmann FR, Ranger-Moore J, Nagle RB, Thompson PA, et al. Phase 3 clinical trial investigating the effect of selenium supplementation in men at high-risk for prostate cancer. Prostate 2013 Feb 15;73:328-35.
7. Allen NE, Beral V, Casabonne D, Kan SW, Reeves GK, Brown A, et al. Moderate alcohol intake and cancer incidence in women. J Natl Cancer Inst 2009 Mar 4;101:296-305.
8. Andreotti G, Hou L, Beane Freeman LE, Mahajan R, Koutros S, Coble J, et al. Body mass index, agricultural pesticide use, and cancer incidence in the Agricultural Health Study cohort. Cancer Causes Control 2010 Nov 22;21:1759-75.
9. Ansems TMR, van der Pols JC, Hughes MC, Ibiebele T, Marks GC, Green AC. Alcohol intake and risk of skin cancer: a prospective study. Eur J Clin Nutr 2008 Feb 6;62:162-70.
10. Asgari MM, Maruti SS, Kushi LH, White E. A cohort study of vitamin D intake and melanoma risk. J Invest Dermatol 2009 Jul 12;129:1675-80.
11. Asgari MM, Tang J, Warton ME, Chren MM, Quesenberry CPJ, Bikle D, et al. Association of prediagnostic serum vitamin D levels with the development of basal cell carcinoma. J Invest Dermatol 2010 May 15;130:1438-43.
12. Asgari MM, Brasky TM, White E. Association of vitamin A and carotenoid intake with melanoma risk in a large prospective cohort. J Invest Dermatol 2012 Jun 15;132:1573-82.
13. Baastrup R, Sorensen M, Balstrom T, Frederiksen K, Larsen CL, Tjonneland A, et al. Arsenic in drinking-water and risk for cancer in Denmark. Environ Health Perspect 2008 Feb 21;116:231-7.
14. Bagnardi V, Rota M, Botteri E, Tramacere I, Islami F, Fedirko V, et al. Alcohol consumption and site-specific cancer risk: a comprehensive dose-response metaanalysis. Br J Cancer 2015 Feb 3;112:580-93.
15. Bath-Hextall F, Leonardi-Bee J, Somchand N, Webster A, Delitt J, Perkins W. Interventions for preventing non-melanoma skin cancers in high-risk groups. Cochrane Database Syst Rev 2007 Oct 17;005414.
16. Batty GD, Barzi F, Woodward M, Jamrozik K, Woo J, Kim HC, et al. Adult height and cancer mortality in Asia: the Asia Pacific Cohort Studies Collaboration. Ann Oncol 2010 Mar 23;21:646-54.
17. Benn M, Tybjaerg-Hansen A, Smith GD, Nordestgaard BG. High body mass index and cancer risk-a Mendelian randomisation study. Eur J Epidemiol 2016 Sep 3;31:879-92.
18. Bhaskaran K, Douglas I, Forbes H, dos-Santos-Silva I, Leon DA, Smeeth L. Bodymass index and risk of 22 specific cancers: a population-based cohort study of 5.24 million UK adults. Lancet 2014 Aug 30;384:755-65.
19. Black HS. Influence of dietary factors on actinically-induced skin cancer. Mutat Res 1998 Nov 9;422:185-90.
20. Bradbury KE, Balkwill A, Spencer EA, Roddam AW, Reeves GK, Green J, et al. Organic food consumption and the incidence of cancer in a large prospective study of women in the United Kingdom. Br J Cancer 2014 Apr 29;110:2321-6.
21. Breslow RA, Alberg AJ, Helzlsouer KJ, Bush TL, Norkus EP, Morris JS, et al. Serological precursors of cancer: malignant melanoma, basal and squamous cell skin cancer, and prediagnostic levels of retinol, beta- carotene, lycopene, alpha-tocopherol, and selenium. Cancer Epidemiol Biomarkers Prev 1995 Dec 10;4:837-42.
22. Brunner RL, Wactawski-Wende J, Caan BJ, Cochrane BB, Chlebowski RT, Gass MLS, et al. The effect of calcium plus vitamin D on risk for invasive cancer: results of the Women's Health Initiative (WHI) calcium plus vitamin D randomized clinical trial. Nutr Cancer 2011 Aug 12;63:827-41.
23. Cai X, Wang C, Yu W, Fan W, Wang S, Shen N, et al. Selenium Exposure and Cancer Risk: an Updated Meta-analysis and Meta-regression. Sci Rep 2016 Jan 20;6:19213.
24. Caini S, Boniol M, Tosti G, Magi S, Medri M, Stanganelli I, et al. Vitamin D and melanoma and non-melanoma skin cancer risk and prognosis: a comprehensive review and meta-analysis. Eur J Cancer 2014 Oct 26;50:2649-58.
25. Caini S, Cattaruzza S, Bendinelli B, Tosti G, Masala G, Gnagnarella P, et al. Coffee, tea and caffeine intake and the risk of non-melanoma skin cancer: a review of the literature and meta-analysis. Eur J Nutr 2016 Jul 7.
26. Clark LC, Combs GFJ, Turnbull BW, Slate EH, Chalker DK, Chow J, et al. Effects of selenium supplementation for cancer prevention in patients with carcinoma of the
skin. A randomized controlled trial. Nutritional Prevention of Cancer Study Group. JAMA 1996 Dec 25;276:1957-63.
27. Combs GFJ, Clark LC, Turnbull BW. Reduction of cancer mortality and incidence by selenium supplementation. Med Klin (Munich) 1997 Sep 15;92 Suppl 3:42-5.
28. Comstock GW, Helzlsouer KJ, Bush TL. Prediagnostic serum levels of carotenoids and vitamin E as related to subsequent cancer in Washington County, Maryland. Am J Clin Nutr 1991 Jan 1;53:260-4.
29. Cook NR, Le IM, Manson JE, Buring JE, Hennekens CH. Effects of beta-carotene supplementation on cancer incidence by baseline characteristics in the Physicians' Health Study (United States). Cancer Causes Control 2000 Aug 8;11:617-26.
30. Cornwell ML, Comstock GW, Holick MF, Bush TL. Prediagnostic serum levels of 1,25-dihydroxyvitamin D and malignant melanoma. Photodermatol Photoimmunol Photomed 1992 Jun 24;9:109-12.
31. Cross AJ, Leitzmann MF, Gail MH, Hollenbeck AR, Schatzkin A, Sinha R. A prospective study of red and processed meat intake in relation to cancer risk. PLoS Med 2007 Dec 28;4:325.
32. Daniel CR, Cross AJ, Graubard BI, Hollenbeck AR, Park Y, Sinha R. Prospective investigation of poultry and fish intake in relation to cancer risk. Cancer Prev Res (Phila) 2011 Nov 4;4:1903-11.
33. Dartois L, Fagherazzi G, Boutron-Ruault MC, Mesrine S, Clavel-Chapelon F. Association between five lifestyle habits and cancer risk: results from the E3N cohort. Cancer Prev Res (Phila) 2014 May 5;7:516-25.
34. Davies TW, Treasure FP, Welch AA, Day NE. Diet and basal cell skin cancer: results from the EPIC-Norfolk cohort. Br J Dermatol 2002 Jun 19;146:1017-22.
35. Dennis LK, Lowe JB, Lynch CF, Alavanja MCR. Cutaneous melanoma and obesity in the Agricultural Health Study. Ann Epidemiol 2008 Mar 18;18:214-21.
36. DerSimonian R, Laird N. Meta-analysis in clinical trials. 7 ed. 1986. p. 177-88.
37. Dorgan JF, Boakye NA, Fears TR, Schleicher RL, Helsel W, Anderson C, et al. Serum carotenoids and alpha-tocopherol and risk of nonmelanoma skin cancer. Cancer Epidemiol Biomarkers Prev 2004 Aug 9;13:1276-82.
38. Dreno B, Euvrard S, Frances C, Moyse D, Nandeuil A. Effect of selenium intake on the prevention of cutaneous epithelial lesions in organ transplant recipients. Eur J Dermatol 2007 Mar 15;17:140-5.
39. Druesne-Pecollo N, Latino-Martel P, Norat T, Barrandon E, Bertrais S, Galan P, et al. Beta-carotene supplementation and cancer risk: a systematic review and metaanalysis of randomized controlled trials. Int J Cancer 2010 Jul 1;127:172-84.
40. Duffield-Lillico AJ, Reid ME, Turnbull BW, Combs GFJ, Slate EH, Fischbach LA, et al. Baseline characteristics and the effect of selenium supplementation on cancer
incidence in a randomized clinical trial: a summary report of the Nutritional Prevention of Cancer Trial. Cancer Epidemiol Biomarkers Prev 2002 Jul 8;11:630-9.
41. Egger M, Davey SG, Schneider M, Minder C. Bias in meta-analysis detected by a simple, graphical test. BMJ 1997 Sep 13;315(7109):629-34.
42. Eide MJ, Johnson DA, Jacobsen GR, Krajenta RJ, Rao DS, Lim HW, et al. Vitamin D and nonmelanoma skin cancer in a health maintenance organization cohort. Arch Dermatol 2011 Dec 20;147:1379-84.
43. Ezzedine K, Latreille J, Kesse-Guyot E, Galan P, Hercberg S, Guinot C, et al. Incidence of skin cancers during 5 -year follow-up after stopping antioxidant vitamins and mineral supplementation. Eur J Cancer 2010 Dec 29;46:3316-22.
44. Feskanich D, Willett WC, Hunter DJ, Colditz GA. Dietary intakes of vitamins A, C, and E and risk of melanoma in two cohorts of women. Br J Cancer 2003 May 6;88:1381-7.
45. Foote JA, Harris RB, Giuliano AR, Roe DJ, Moon TE, Cartmel B, et al. Predictors for cutaneous basal- and squamous-cell carcinoma among actinically damaged adults. Int J Cancer 2001 Jan 20;95:7-11.
46. Freedman DM, Sigurdson A, Doody MM, Mabuchi K, Linet MS. Risk of basal cell carcinoma in relation to alcohol intake and smoking. Cancer Epidemiol Biomarkers Prev 2003 Dec 24;12:1540-1543b.
47. Freedman DM, Sigurdson A, Doody MM, Rao RS, Linet MS. Risk of melanoma in relation to smoking, alcohol intake, and other factors in a large occupational cohort. Cancer Causes Control 2003 Nov 19;14:847-857a.
48. Frieling UM, Schaumberg DA, Kupper TS, Muntwyler J, Hennekens CH. A randomized, 12-year primary-prevention trial of beta carotene supplementation for nonmelanoma skin cancer in the physician's health study. Arch Dermatol 2000 Feb 1;136:179-84.
49. Fung TT, Hunter DJ, Spiegelman D, Colditz GA, Rimm EB, Willett WC. Intake of alcohol and alcoholic beverages and the risk of basal cell carcinoma of the skin. Cancer Epidemiol Biomarkers Prev 2002 Oct 11;11:1119-1122a.
50. Fung TT, Hunter DJ, Spiegelman D, Colditz GA, Speizer FE, Willett WC. Vitamins and carotenoids intake and the risk of basal cell carcinoma of the skin in women (United States). Cancer Causes Control 2002 Apr 21;13:221-230b.
51. Fung TT, Spiegelman D, Egan KM, Giovannucci E, Hunter DJ, Willett WC. Vitamin and carotenoid intake and risk of squamous cell carcinoma of the skin. Int J Cancer 2003 Jan 1;103:110-5.
52. Gamba CS, Stefanick ML, Shikany JM, Larson J, Linos E, Sims ST, et al. Low-fat diet and skin cancer risk: the women's health initiative randomized controlled dietary modification trial. Cancer Epidemiol Biomarkers Prev 2013 Sep 9;22:1509-19.
53. Garland M, Morris JS, Stampfer MJ, Colditz GA, Spate VL, Baskett CK, et al. Prospective study of toenail selenium levels and cancer among women. J Natl Cancer Inst 1995 Apr 5;87:497-505.
54. Gaziano JM, Sesso HD, Christen WG, Bubes V, Smith JP, MacFadyen J, et al. Multivitamins in the prevention of cancer in men: the Physicians' Health Study II randomized controlled trial. JAMA 2012 Nov 14;308:1871-80.
55. George SM, Park Y, Leitzmann MF, Freedman ND, Dowling EC, Reedy J, et al. Fruit and vegetable intake and risk of cancer: a prospective cohort study. Am J Clin Nutr 2009 Jan 7;89:347-53.
56. Gerstenblith MR, Rajaraman P, Khaykin E, Doody MM, Alexander BH, Linet MS, et al. Basal cell carcinoma and anthropometric factors in the U.S. radiologic technologists cohort study. Int J Cancer 2012 Jul 15;131:149-55.
57. Gray L, Lee IM, Sesso HD, Batty GD. Association of body mass index in early adulthood and middle age with future site-specific cancer mortality: the Harvard Alumni Health Study. Ann Oncol 2012 Mar 27;23:754-9.
58. Green A, Williams G, Neale R, Hart V, Leslie D, Parsons P, et al. Daily sunscreen application and betacarotene supplementation in prevention of basal-cell and squamous-cell carcinomas of the skin: a randomised controlled trial. Lancet 1999 Aug 28;354:723-9.
59. Green J, Cairns BJ, Casabonne D, Wright FL, Reeves G, Beral V. Height and cancer incidence in the Million Women Study: prospective cohort, and meta-analysis of prospective studies of height and total cancer risk. Lancet Oncol 2011 Aug 2;12:78594.
60. Greenberg ER, Baron JA, Stukel TA, Stevens MM, Mandel JS, Spencer SK, et al. A clinical trial of beta carotene to prevent basal-cell and squamous-cell cancers of the skin. The Skin Cancer Prevention Study Group. N Engl J Med 1990 Sep 20;323:78995.
61. Greenland S, Longnecker MP. Methods for trend estimation from summarized doseresponse data, with applications to meta-analysis. Am J Epidemiol 1992 Jun 1;135(11):1301-9.
62. Hamling J, Lee P, Weitkunat R, Ambuhl M. Facilitating meta-analyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category. Stat Med 2008 Mar 30;27(7):954-70.
63. Hankey GJ, Eikelboom JW, Yi Q, Lees KR, Chen C, Xavier D, et al. Treatment with B vitamins and incidence of cancer in patients with previous stroke or transient ischemic attack: results of a randomized placebo-controlled trial. Stroke 2012 Jun 28;43:1572-7.
64. Heinen MM, Hughes MC, Ibiebele TI, Marks GC, Green AC, van der Pols JC. Intake of antioxidant nutrients and the risk of skin cancer. Eur J Cancer 2007 Dec 30;43:2707-16.
65. Hemminki K, Li X, Sundquist J, Sundquist K. Obesity and familial obesity and risk of cancer. Eur J Cancer Prev 2011 Sep 29;20:438-43.
66. Hennekens CH, Buring JE, Manson JE, Stampfer M, Rosner B, Cook NR, et al. Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 1996 May 2;334:1145-9.
67. Heo M, Kabat GC, Strickler HD, Lin J, Hou L, Stefanick ML, et al. Optimal cutoffs of obesity measures in relation to cancer risk in postmenopausal women in the Women's Health Initiative Study. J Womens Health (Larchmt) 2015 Mar;24(3):21827.
68. Hercberg S, Ezzedine K, Guinot C, Preziosi P, Galan P, Bertrais S, et al. Antioxidant supplementation increases the risk of skin cancers in women but not in men. J Nutr 2007 Sep 21;137:2098-105.
69. Higgins JP, Thompson SG. Quantifying heterogeneity in a meta-analysis. Stat Med 2002 Jun 15;21(11):1539-58.
70. Hsueh YM, Chiou HY, Huang YL, Wu WL, Huang CC, Yang MH, et al. Serum betacarotene level, arsenic methylation capability, and incidence of skin cancer. Cancer Epidemiol Biomarkers Prev 1997 Aug 15;6:589-96.
71. Hughes MC, van der Pols JC, Marks GC, Green AC. Food intake and risk of squamous cell carcinoma of the skin in a community: the Nambour skin cancer cohort study. Int J Cancer 2006 Oct 15;119:1953-60.
72. Hunter DJ, Colditz GA, Stampfer MJ, Rosner B, Willett WC, Speizer FE. Diet and risk of basal cell carcinoma of the skin in a prospective cohort of women. Ann Epidemiol 1992 May 10;2:231-9.
73. Ibiebele TI, van der Pols JC, Hughes MC, Marks GC, Williams GM, Green AC. Dietary pattern in association with squamous cell carcinoma of the skin: a prospective study. Am J Clin Nutr 2007 May 10;85:1401-8.
74. Jacobsen BK, Bjelke E, Kvale G, Heuch I. Coffee drinking, mortality, and cancer incidence: results from a Norwegian prospective study. J Natl Cancer Inst 1986 May 11;76:823-31.
75. Jensen A, Birch-Johansen F, Olesen AB, Christensen J, Tjonneland A, Kjaer SK. Intake of alcohol may modify the risk for non-melanoma skin cancer: results of a large Danish prospective cohort study. J Invest Dermatol 2012 Dec 28;132:2718-26.
76. Kabat GC, Anderson ML, Heo M, Hosgood HD, Kamensky V, Bea JW, et al. Adult stature and risk of cancer at different anatomic sites in a cohort of postmenopausal women. Cancer Epidemiol Biomarkers Prev 2013 Aug 2;22:1353-1363b.
77. Kabat GC, Heo M, Kamensky V, Miller AB, Rohan TE. Adult height in relation to risk of cancer in a cohort of Canadian women. Int J Cancer 2013 Mar 1;132:11251132a.
78. Kabat GC, Kim MY, Hollenbeck AR, Rohan TE. Attained height, sex, and risk of cancer at different anatomic sites in the NIH-AARP diet and health study. Cancer Causes Control 2014 Dec 18;25:1697-706.
79. Kabat GC, Matthews CE, Kamensky V, Hollenbeck AR, Rohan TE. Adherence to cancer prevention guidelines and cancer incidence, cancer mortality, and total mortality: a prospective cohort study. Am J Clin Nutr 2015 Mar 3;101:558-69.
80. Karagas MR, Greenberg ER, Nierenberg D, Stukel TA, Morris JS, Stevens MM, et al. Risk of squamous cell carcinoma of the skin in relation to plasma selenium, alphatocopherol, beta-carotene, and retinol: a nested case-control study. Cancer Epidemiol Biomarkers Prev 1997 Jan 20;6:25-9.
81. Kark JD, Smith AH, Switzer BR, Hames CG. Serum vitamin A (retinol) and cancer incidence in Evans County, Georgia. J Natl Cancer Inst 1981 Jan 27;66:7-16.
82. Key TJ, Appleby PN, Spencer EA, Travis RC, Allen NE, Thorogood M, et al. Cancer incidence in British vegetarians. Br J Cancer 2009 Jul 7;101:192-7.
83. Klatsky AL, Li Y, Nicole Tran H, Baer D, Udaltsova N, Armstrong MA, et al. Alcohol intake, beverage choice, and cancer: a cohort study in a large Kaiser Permanente population. Perm J 2015 Apr 23;19:28-34.
84. Knekt P, Aromaa A, Maatela J, Alfthan G, Aaran RK, Hakama M, et al. Serum selenium and subsequent risk of cancer among Finnish men and women. J Natl Cancer Inst 1990 May 16;82:864-868b.
85. Knekt P, Aromaa A, Maatela J, Aaran RK, Nikkari T, Hakama M, et al. Serum vitamin A and subsequent risk of cancer: cancer incidence follow-up of the Finnish Mobile Clinic Health Examination Survey. Am J Epidemiol 1990 Nov 4;132:857870a.
86. Knekt P, Aromaa A, Maatela J, Alfthan G, Aaran RK, Nikkari T, et al. Serum micronutrients and risk of cancers of low incidence in Finland. Am J Epidemiol 1991 Aug 15;134:356-61.
87. Kubo JT, Henderson MT, Desai M, Wactawski-Wende J, Stefanick ML, Tang JY. Alcohol consumption and risk of melanoma and non-melanoma skin cancer in the Women's Health Initiative. Cancer Causes Control 2014 Jan 7;25:1-10.
88. Kvaskoff M, Bijon A, Mesrine S, Vilier A, Clavel-Chapelon F, Boutron-Ruault MC. Anthropometric features and cutaneous melanoma risk: a prospective cohort study in French women. Cancer Epidemiol 2014 Aug 22;38:357-63.
89. Lahmann PH, Russell A, Green AC. Prospective study of physical activity and risk of squamous cell carcinoma of the skin. BMC cancer 2011 Dec 13;11:516.
90. Lee IM, Cook NR, Manson JE, Buring JE, Hennekens CH. Beta-carotene supplementation and incidence of cancer and cardiovascular disease: the Women's Health Study. J Natl Cancer Inst 1999 Dec 15;91:2102-6.
91. Levine N, Moon TE, Cartmel B, Bangert JL, Rodney S, Dong Q, et al. Trial of retinol and isotretinoin in skin cancer prevention: a randomized, double-blind, controlled trial. Southwest Skin Cancer Prevention Study Group. Cancer Epidemiol Biomarkers Prev 1997 Nov 30;6:957-61.
92. Lewis DR, Southwick JW, Ouellet-Hellstrom R, Rench J, Calderon RL. Drinking water arsenic in Utah: A cohort mortality study. Environ Health Perspect 1999 May 28;107:359-65.
93. Liang G, Nan H, Qureshi AA, Han J. Pre-diagnostic plasma 25-hydroxyvitamin D levels and risk of non-melanoma skin cancer in women. PloS one 2012 Apr 11;7:35211.
94. Liu J, Shen B, Shi M, Cai J. Higher Caffeinated Coffee Intake Is Associated with Reduced Malignant Melanoma Risk: A Meta-Analysis Study. PloS one 2016 Jan 28;11:0147056.
95. Loftfield E, Freedman ND, Graubard BI, Hollenbeck AR, Shebl FM, Mayne ST, et al. Coffee drinking and cutaneous melanoma risk in the NIH-AARP diet and health study. J Natl Cancer Inst 2015 Feb 21;107.
96. Lonn E, Yusuf S, Arnold MJ, Sheridan P, Pogue J, Micks M, et al. Homocysteine lowering with folic acid and B vitamins in vascular disease. N Engl J Med 2006 Apr 13;354:1567-77.
97. Lukanova A, Bjor O, Kaaks R, Lenner P, Lindahl B, Hallmans G, et al. Body mass index and cancer: results from the Northern Sweden Health and Disease Cohort. Int J Cancer 2006 Jan 15;118:458-66.
98. Major JM, Kiruthu C, Weinstein SJ, Horst RL, Snyder K, Virtamo J, et al. Prediagnostic circulating vitamin D and risk of melanoma in men. PloS one 2012 May 4;7:35112.
99. McCormack VA, dos Santos Silva I, Koupil I, Leon DA, Lithell HO. Birth characteristics and adult cancer incidence: Swedish cohort of over 11,000 men and women. Int J Cancer 2005 Jul 1;115:611-7.
100. McNaughton SA, Marks GC, Gaffney P, Williams G, Green AC. Antioxidants and basal cell carcinoma of the skin: a nested case-control study. Cancer Causes Control 2005 Jun 29;16:609-18.
101. Milan T, Verkasalo PK, Kaprio J, Koskenvuo M. Lifestyle differences in twin pairs discordant for basal cell carcinoma of the skin. Br J Dermatol 2003 Jul 31;149:11523.
102. Mills PK, Beeson WL, Phillips RL, Fraser GE. Cancer incidence among California Seventh-Day Adventists, 1976-1982. Am J Clin Nutr 1994 May 2;59:1136-42.
103. Miura K, Hughes MC, Green AC, van der Pols JC. Caffeine intake and risk of basal cell and squamous cell carcinomas of the skin in an 11-year prospective study. Eur J Nutr 2014 Feb 17;53:511-20.
104. Moller H, Mellemgaard A, Lindvig K, Olsen JH. Obesity and cancer risk: a Danish record-linkage study. Eur J Cancer 1994 Jul 13;30A:344-50.
105. Moon TE, Levine N, Cartmel B, Bangert JL. Retinoids in prevention of skin cancer. Cancer Lett 1997 Mar 19;114:203-205b.
106. Moon TE, Levine N, Cartmel B, Bangert JL, Rodney S, Dong Q, et al. Effect of retinol in preventing squamous cell skin cancer in moderate-risk subjects: a randomized, double-blind, controlled trial. Southwest Skin Cancer Prevention Study Group. Cancer Epidemiol Biomarkers Prev 1997 Nov 30;6:949-956a.
107. Nagel G, Bjorge T, Stocks T, Manjer J, Hallmans G, Edlinger M, et al. Metabolic risk factors and skin cancer in the Metabolic Syndrome and Cancer Project (Me-Can). Br J Dermatol 2012 Jul 28;167:59-67.
108. Nilsson LM, Johansson I, Lenner P, Lindahl B, Van Guelpen B. Consumption of filtered and boiled coffee and the risk of incident cancer: a prospective cohort study. Cancer Causes Control 2010 Oct 17;21:1533-44.
109. Nilsson LM, Winkvist A, Johansson I, Lindahl B, Hallmans G, Lenner P, et al. Lowcarbohydrate, high-protein diet score and risk of incident cancer; a prospective cohort study. Nutr J 2013 May 7; 12:58.
110. O'Rorke MA, Black C, Murray LJ, Cardwell CR, Gavin AT, Cantwell MM. Do perinatal and early life exposures influence the risk of malignant melanoma? A Northern Ireland birth cohort analysis. Eur J Cancer 2013 Mar 11;49:1109-16.
111. Odenbro A, Bellocco R, Boffetta P, Lindelof B, Adami J. Tobacco smoking, snuff dipping and the risk of cutaneous squamous cell carcinoma: a nationwide cohort study in Sweden. Br J Cancer 2005 Apr 11;92:1326-8.
112. Odenbro A, Gillgren P, Bellocco R, Boffetta P, Hakansson N, Adami J. The risk for cutaneous malignant melanoma, melanoma in situ and intraocular malignant melanoma in relation to tobacco use and body mass index. Br J Dermatol 2007 Jan 3;156:99-105.
113. Oh SW, Yoon YS, Shin SA. Effects of excess weight on cancer incidences depending on cancer sites and histologic findings among men: Korea National Health Insurance Corporation Study. J Clin Oncol 2005 Jul 20;23:4742-54.
114. Olesen AV, Parner ET, Mortensen PB, Sorensen HT, Olsen J. Prenatal risk factors for cutaneous malignant melanoma: follow-up of 2,594,783 Danes born from 1950 to 2002. Cancer Epidemiol Biomarkers Prev 2009 Jan 6;18:155-61.
115. Olsen CM, Hughes MC, Pandeya N, Green AC. Anthropometric measures in relation to basal cell carcinoma: a longitudinal study. BMC cancer 2006 Mar 27;6:82.
116. Orsini N, Bellocco R, Greenland S. Generalized least squares for trend estimation of summarized dose-response data. 6 ed. 2006. p. 40-57.
117. Peleg I, Heyden S, Knowles M, Hames CG. Serum retinol and risk of subsequent cancer: extension of the Evans County, Georgia, study. J Natl Cancer Inst 1984 Dec 6;73:1455-8.
118. Peleg I, Morris S, Hames CG. Is serum selenium a risk factor for cancer? Med Oncol Tumor Pharmacother 1985 Jan 16;2:157-63.
119. Pothiawala S, Qureshi AA, Li Y, Han J. Obesity and the incidence of skin cancer in US Caucasians. Cancer Causes Control 2012 May 26;23:717-26.
120. Praestegaard C, Kjaer SK, Christensen J, Tjonneland A, Halkjaer J, Jensen A. Obesity and risks for malignant melanoma and non-melanoma skin cancer: results from a large Danish prospective cohort study. J Invest Dermatol 2015 Mar 10;135:901-4.
121. Pukkala E, Poskiparta M, Apter D, Vihko V. Life-long physical activity and cancer risk among Finnish female teachers. Eur J Cancer Prev 1993 Sep 18;2:369-76.
122. Rapp K, Schroeder J, Klenk J, Stoehr S, Ulmer H, Concin H, et al. Obesity and incidence of cancer: a large cohort study of over 145,000 adults in Austria. Br J Cancer 2005 Oct 31;93:1062-7.
123. Rapp K, Klenk J, Ulmer H, Concin H, Diem G, Oberaigner W, et al. Weight change and cancer risk in a cohort of more than 65,000 adults in Austria. Ann Oncol 2008 Apr 26;19:641-8.
124. Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D. Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ 2007 Dec 1;335:1134.
125. Reid ME, Duffield-Lillico AJ, Slate E, Natarajan N, Turnbull B, Jacobs E, et al. The nutritional prevention of cancer: 400 mcg per day selenium treatment. Nutr Cancer 2008 Apr 29;60:155-63.
126. Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008 Feb 16;371:569-78.
127. Rota M, Pasquali E, Bellocco R, Bagnardi V, Scotti L, Islami F, et al. Alcohol drinking and cutaneous melanoma risk: a systematic review and dose-risk metaanalysis. Br J Dermatol 2014 May 20;170:1021-8.
128. Samanic C, Gridley G, Chow WH, Lubin J, Hoover RN, Fraumeni JFJ. Obesity and cancer risk among white and black United States veterans. Cancer Causes Control 2004 Feb 18;15:35-43.
129. Samanic C, Chow WH, Gridley G, Jarvholm B, Fraumeni JFJ. Relation of body mass index to cancer risk in 362,552 Swedish men. Cancer Causes Control 2006 Sep 14;17:901-9.
130. Schaumberg DA, Frieling UM, Rifai N, Cook N. No effect of beta-carotene supplementation on risk of nonmelanoma skin cancer among men with low baseline plasma beta-carotene. Cancer Epidemiol Biomarkers Prev 2004 Jun 8;13:1079-80.
131. Schnohr P, Gronbaek M, Petersen L, Hein HO, Sorensen TIA. Physical activity in leisure-time and risk of cancer: 14-year follow-up of 28,000 Danish men and women. Scand J Public Health 2005 Aug 9;33:244-9.
132. Sergentanis TN, Antoniadis AG, Gogas HJ, Antonopoulos CN, Adami HO, Ekbom A, et al. Obesity and risk of malignant melanoma: a meta-analysis of cohort and casecontrol studies. Eur J Cancer 2013 Feb 25;49:642-57.
133. Skaaby T, Husemoen LLN, Thuesen BH, Pisinger C, Jorgensen T, Roswall N, et al. Prospective population-based study of the association between serum 25-hydroxyvitamin-D levels and the incidence of specific types of cancer. Cancer Epidemiol Biomarkers Prev 2014 Jul 3;23:1220-9.
134. Song F, Qureshi AA, Han J. Increased caffeine intake is associated with reduced risk of basal cell carcinoma of the skin. Cancer Res 2012 Jul 1;72:3282-9.
135. Sormunen J, Backmand HM, Sarna S, Kujala UM, Kaprio J, Dyba T, et al. Lifetime physical activity and cancer incidence--a cohort study of male former elite athletes in Finland. J Sci Med Sport 2014 Sep 23;17:479-84.
136. Spracklen CN, Wallace RB, Sealy-Jefferson S, Robinson JG, Freudenheim JL, Wellons MF, et al. Birth weight and subsequent risk of cancer. Cancer Epidemiol 2014 Oct 6;38:538-43.
137. Stensvold I, Jacobsen BK. Coffee and cancer: a prospective study of 43,000 Norwegian men and women. Cancer Causes Control 1994 Sep 23;5:401-8.
138. Sung J, Song YM, Lawlor DA, Smith GD, Ebrahim S. Height and site-specific cancer risk: A cohort study of a korean adult population. Am J Epidemiol 2009 Jul 1;170:5364.
139. Tang JY, Parimi N, Wu A, Boscardin WJ, Shikany JM, Chren MM, et al. Inverse association between serum $25(\mathrm{OH})$ vitamin D levels and non-melanoma skin cancer in elderly men. Cancer Causes Control 2010 Mar 17;21:387-91.
140. Tang JY, Fu T, Leblanc E, Manson JE, Feldman D, Linos E, et al. Calcium plus vitamin D supplementation and the risk of nonmelanoma and melanoma skin cancer: post hoc analyses of the women's health initiative randomized controlled trial. J Clin Oncol 2011 Aug 1;29:3078-84.
141. Tang JY, Henderson MT, Hernandez-Boussard T, Kubo J, Desai M, Sims ST, et al. Lower skin cancer risk in women with higher body mass index: the women's health initiative observational study. Cancer Epidemiol Biomarkers Prev 2013 Dec 9;22:2412-5.
142. Thune I, Olsen A, Albrektsen G, Tretli S. Cutaneous malignant melanoma: association with height, weight and body-surface area. a prospective study in Norway. Int J Cancer 1993 Oct 21;55:555-61.
143. Thygesen LC, Albertsen K, Johansen C, Gronbaek M. Cancer incidence among Danish brewery workers. Int J Cancer 2005 Sep 20;116:774-8.
144. van Dam RM, Huang Z, Giovannucci E, Rimm EB, Hunter DJ, Colditz GA, et al. Diet and basal cell carcinoma of the skin in a prospective cohort of men. Am J Clin Nutr 2000 Jan 27;71:135-41.
145. van der Pols JC, Hughes MCB, Ibiebele TI, Marks GC, Green AC. Food intake and risk of basal cell carcinoma in an 11-year prospective study of Australian adults. Eur J Clin Nutr 2011 Jan 5;65:39-46.
146. van der Pols JC, Heinen MM, Hughes MC, Ibiebele TI, Marks GC, Green AC. Serum antioxidants and skin cancer risk: an 8 -year community-based follow-up study. Cancer Epidemiol Biomarkers Prev 2009 Apr 9;18:1167-73.
147. van der Pols JC, Russell A, Bauer U, Neale RE, Kimlin MG, Green AC. Vitamin D status and skin cancer risk independent of time outdoors: 11-year prospective study in an Australian community. J Invest Dermatol 2013 Mar 12;133:637-41.
148. Veierod MB, Thelle DS, Laake P. Diet and risk of cutaneous malignant melanoma: a prospective study of 50,757 Norwegian men and women. Int J Cancer 1997 May 16;71:600-4.
149. Vessey MP, Painter R, Powell J. Skin disorders in relation to oral contraception and other factors, including age, social class, smoking and body mass index. Findings in a large cohort study. Br J Dermatol 2000 Oct 20;143:815-20.
150. Vinceti M, Bassissi S, Malagoli C, Pellacani G, Alber D, Bergomi M, et al. Environmental exposure to trace elements and risk of cutaneous melanoma. J Expo Anal Environ Epidemiol 2005 Sep 15;15:458-62.
151. Vinceti M, Dennert G, Crespi CM, Zwahlen M, Brinkman M, Zeegers MPA, et al. Selenium for preventing cancer. Cochrane Database Syst Rev 2014 Mar 30;005195.
152. Vollset SE, Clarke R, Lewington S, Ebbing M, Halsey J, Lonn E, et al. Effects of folic acid supplementation on overall and site-specific cancer incidence during the randomised trials: meta-analyses of data on 50,000 individuals. Lancet 2013 Mar 23;381:1029-36.
153. Wald N, Idle M, Boreham J, Bailey A. Low serum-vitamin-A and subsequent risk of cancer. Preliminary results of a prospective study. Lancet 1980 Oct 18;2:813-5.
154. Wald N, Boreham J, Bailey A. Serum retinol and subsequent risk of cancer. Br J Cancer 1986 Dec 4;54:957-61.
155. Wald NJ, Thompson SG, Densem JW, Boreham J, Bailey A. Serum beta-carotene and subsequent risk of cancer: results from the BUPA Study. Br J Cancer 1988 Apr 25;57:428-33.
156. Walter RB, Brasky TM, Buckley SA, Potter JD, White E. Height as an explanatory factor for sex differences in human cancer. J Natl Cancer Inst 2013 Jun 19;105:860-8.
157. Wang J, Li X, Zhang D. Coffee consumption and the risk of cutaneous melanoma: a meta-analysis. Eur J Nutr 2016 Jun 21;55:1317-29.
158. Whittemore AS, Paffenbarger RSJ, Anderson K, Lee JE. Early precursors of sitespecific cancers in college men and women. J Natl Cancer Inst 1985 Jan 1;74:43-51.
159. Wiren S, Haggstrom C, Ulmer H, Manjer J, Bjorge T, Nagel G, et al. Pooled cohort study on height and risk of cancer and cancer death. Cancer Causes Control 2014 Feb 24;25:151-9.
160. Wolk A, Gridley G, Svensson M, Nyren O, McLaughlin JK, Fraumeni JF, et al. A prospective study of obesity and cancer risk (Sweden). Cancer Causes Control 2001 Jan 28;12:13-21.
161. Wu H, Reeves KW, Qian J, Sturgeon SR. Coffee, tea, and melanoma risk among postmenopausal women. Eur J Cancer Prev 2015 Jul 27;24:347-352b.
162. Wu S, Han J, Feskanich D, Cho E, Stampfer MJ, Willett WC, et al. Citrus Consumption and Risk of Cutaneous Malignant Melanoma. J Clin Oncol 2015 Aug 10;33(23):2500-2508a.
163. Wu S, Li WQ, Qureshi AA, Cho E. Alcohol consumption and risk of cutaneous basal cell carcinoma in women and men: 3 prospective cohort studies. Am J Clin Nutr 2015 Nov 3;102:1158-1166d.
164. Wu S, Han J, Song F, Cho E, Gao X, Hunter DJ, et al. Caffeine Intake, Coffee Consumption, and Risk of Cutaneous Malignant Melanoma. Epidemiology 2015 Nov 29;26:898-908c.
165. Yang TO, Reeves GK, Green J, Beral V, Cairns BJ. Birth weight and adult cancer incidence: large prospective study and meta-analysis. Ann Oncol 2014 Sep 26;25:1836-43.
166. Zhang SM, Cook NR, Albert CM, Gaziano JM, Buring JE, Manson JE. Effect of combined folic acid, vitamin B6, and vitamin B12 on cancer risk in women: a randomized trial. JAMA 2008 Nov 5;300:2012-21.
167. Zhang SL, Chen TS, Ma CY, Meng YB, Zhang YF, Chen YW, et al. Effect of vitamin B supplementation on cancer incidence, death due to cancer, and total mortality: A PRISMA-compliant cumulative meta-analysis of randomized controlled trials. Medicine (Baltimore) 2016 Aug 6;95:3485.
168. Zhang YP, Chu RX, Liu H. Vitamin A intake and risk of melanoma: a meta-analysis. PloS one 2014 Jul 22;9:102527.

Appendix 1 The protocol

Systematic Literature Review Protocol

The associations between food, nutrition, physical activity and the risk of cancer of the skin and underlying mechanisms

University of Bristol

Date: 9 June 2005

1 Research question

The associations between food, nutrition and physical activity and the risk of cancer of the skin and underlying mechanisms.

2 Review team

Dr Trudy Bekkering, Research Associate in Epidemiology, University of Bristol Contribution: Project manager, reviewer (100%) Expertise: Epidemiology, Systematic Reviews

Ms Rebecca Beynon, Research Assistant, University of Bristol Contribution: Administrative support (100%)

Ms Margaret Burke, Trials Search Coordinator, Cochrane Heart Group
Contribution: Specialist in search strategies (15\%)
Expertise: Information specialist, Systematic Reviews
Professor George Davey Smith, Professor of Epidemiology, University of Bristol
Contribution: Joint SLR leader, Epidemiologist (10\%)
Expertise: Epidemiology, Systematic Reviews and Meta-Analysis
Mr Ross Harris, Statistician, University of Bristol
Contribution: Statistician (100\%)
Expertise: Medical Statistics
Dr Jonathan Sterne, Reader in Medical Statistics and Epidemiology, University of Bristol
Contribution: Joint SLR leader, statistician, Epidemiologist (10\%)
Expertise: Epidemiology, Systematic Reviews and Meta-Analysis, Medical Statistics

Dr Steve Thomas, Consultant Surgeon and Senior Lecturer, University of Bristol Contribution: Specialist in cancer (10\%)
Expertise: Cancer, Systematic Reviews and Meta-Analysis
Professor Massimo Pignatelli, Professor of Histopathology, University of Bristol Contribution: Specialist in cancer biology/mechanisms (5\%)
Expertise: Histopathology in cancer
Dr Andy Ness, Senior Lecturer in Epidemiology, University of Bristol
Contribution: Specialist in nutrition (5\%)
Expertise: Epidemiology, Systematic Reviews, Nutrition
Ms Luisa Zuccolo, Research Associate in Epidemiology, University of Bristol Contribution: Reviewer (100\%)

External advisors

Professor Chris Bain, Professor of Epidemiology, University of Queensland, Australia

Contribution: Specialist in cancer
Expertise: Epidemiology, Cancer, Systematic Reviews and Meta-Analysis
Dr Lee Hooper, Lecturer in Evidence Based Care And Systematic Review, University of Manchester
Contribution: Specialist in systematic reviews on nutrition
Expertise: Epidemiology, Systematic Reviews and Meta-Analysis, Nutrition
Dr David de Berker, Consultant dermatologist, United Bristol Health Care Trust
Contribution: Specialist in skin cancer
Expertise: Skin cancer

3 Timeline

Protocol ready:
Preliminary output from search strategy:
Design of the data extraction sheets:
List of all relevant papers included in the review:
Results of the preliminary analyses:
Report finished:
Update review:

15 June 2005
1 July 2005
1 July 2005
1 September 2005
1 November 2005
30 December 2005
30 June 2006

All activities will be piloted in order to ensure the process runs smoothly and problems are identified and resolved before the main activities are undertaken. The Review Coordinator will be contacted if we identify any problems with respect to the review process or if we expect to be off target with regard to the timeline. Ongoing changes to the protocol may make it necessary to review the timeline of the review.

4 Background

The most common forms of skin cancer are usually divided into two types: melanoma and non melanoma skin cancer (NMSC).

Melanoma originates from pigment cells or melanocytes. In 2002, there were an estimated 160,116 new cases of melanoma reported worldwide and the standardised incidence rate was 100 (Globocan, 2002). Malignant melanoma of the skin occurs predominantly in white-skinned populations. Almost 80% of the new cases are in North America, Europe, Australia and New Zealand. In 2002, 23,039 new cases of melanoma of the skin were reported in Western Europe compared with 807 in Northern Africa (Globocan, 2002). Globocan figures are estimates based on data from cancer registries. It has to be noted that most cancer registries cannot be assumed to be complete for skin cancers and thus that the figures are likely to be underestimates. The most common histopathological type of melanoma is superficial spreading melanoma, which accounts for more than 50% of the melanoma. Next most common is nodular melanoma, which is said to share many of the epidemiological features of other types of melanoma. Lentigo malignana melanoma is relatively uncommon (Armstrong and English, 1996). Mortality rates from melanoma have been steadily increasing in most white populations for many years. There were 40,731 deaths from melanoma of the skin in 2002 (Globocan, 2002).

Five-year survival rate of melanoma in Europe is 81% (Sant, 2003). In the US it lies between 70 and 85%. These rates differ between races and thickness of the melanoma at diagnosis (Armstrong and English, 1996).
NMSC is the most common malignant neoplasm in Caucasian populations around the world. In the UK there are more than 62,000 new cases registered in 2001
(www.cancerresearchuk.org). However, this figure is an underestimate as registration is generally incomplete.
The most common types of NMSC are squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). Both originate from epidermal cells. The risks of BCC and SCC have shown to have a positive association with exposure to Solar UV radiation and a negative association with the degree of skin pigmentation. Thus, in the US, NMSC is more common among whites than blacks, Asians, Hispanics and Native Americans. Annual age-adjusted incidence rates (per 100,000) for BCC and SCC among US whites are 199 and 43 respectively (Scotto et al, 1996). Worldwide, the highest rates have been reported in the white populations of Australia and South Africa.
SCC is more invasive then BCC; it is estimated that less than 1 out of 500 patients with SCC die of this cancer (Preston and Stern, 1992). It has to be noted that the incidence figures of NMSC are not comparable with those of other cancers because most NMSC are seen and treated in offices of physicians whereas other cancers registers use figures from hospitals. Also, it is common for someone to have multiple NMSC, whereas that is rare for other neoplasms.

Recommendations for the prevention of skin cancer were not included in the expert report 'Food, Nutrition and the Prevention of Cancer: a global perspective' (WCRF, 1997).

5 Search strategy

The search aims to identify all types of evidence relevant to the research question. Therefore, epidemiological literature as well as mechanistic literature will be searched and reviewed. A separate search strategy will be used for the two types of literature.

A. Epidemiological literature

A systematic search will be carried out for the epidemiological literature. All search strategies will be generated with the consultation of a medical librarian. Searching will be carried out using the sources and time-periods as specified in the manual (WCRF, 2003):

- MEDLINE (1966-present)
- EMBASE (1980-present)
- ISI Web of Science
- BIOSIS (Previews) (1985-present)
- SciSearch
- MetaRegister
- LILACS
- The Cochrane Library (2005, Issue 2). Searches will include DARE (Database of Abstracts of Reviews of Effects); CDSR (Cochrane Database of Systematic Reviews) and HTA (Health Technology Assessment)
- CAB abstracts
- Follow-up of references from relevant papers / personal communication with experts
- Follow-up of references from recent systematic reviews
- Hand searching will be used to check on the completeness of initial electronic searches (only if a journal not included by the electronic databases shows up consistently in citation lists)

Search strategy for MEDLINE

Searching for all studies relating to food, nutrition and physical activity. Terms for the exposures as specified in the manual will be used (WCRF, 2003) (Appendix 1). These will be combined with terms for skin cancer as specified below.

Skin cancer

a) Searching for all studies relating to skin:

1. Exp Skin neoplasms
2. Exp Melanoma
3. Exp Basal cell carcinoma
4. Exp squamous cell carcinoma
5. skin adj4 (cancer\$ or neoplasm\$ or tumo?r\$).tw
6. basal cell adj4 carcinoma\$.tw
7. squamous cell adj4 carcinoma\$.tw
8. melanoma\$.tw
9. text word for basal cell epithelioma
10. text word for squamous cell epithelioma
or/1-11
b) Additional search terms relating to exposure: arsenic is an important exposure with respect to skin cancer. However, this is already in the current search strategy.

The search strategy for MEDLINE will be adapted for other databases with the help of the information specialist.

B. Mechanistic literature

The following search strategy will be used to identify mechanistic reviews. These search terms will be combined with the search terms stated above for the cancer site and the relevant exposures.

1 exp Apoptosis/
2 exp Cell Transformation, Neoplastic/
3 proliferation.tw.
4 apoptosis.tw.
5 differentiation.tw.
6 mechanistic stud\$.tw.

9 Neoplasm Invasiveness/
10 invasion.tw.

6 Study selection criteria

An In-Out Form will be used to assess each paper's inclusion into the review. The inclusion criteria are as follows:

A. Epidemiological literature

Population

Inclusion: Studies of men, women and children.

Exposure

Papers reporting on the effect of at least one of the exposures as listed in section 20 of the SLR specification manual will be included (WCRF, 2003). Main categories include:

Patterns of diet, including regionally defined diets, socio-economically defined diets, culturally defined diets, individual level dietary patterns, other dietary patterns, breastfeeding and other issues

Foods, including starchy foods; fruit and (non-starchy) vegetables; pulses (legumes); nuts and seeds; meat, poultry, fish and egg; fats, oils and sugars; milk and dairy products; and herbs, spices, and condiments.

Beverages, including total fluid intake, water, milk, soft drinks, fruit juices, hot drinks and alcoholic drinks.

Food production, preservation, processing and preparation.
Dietary constituents, including carbohydrate, lipids, protein, alcohol, vitamins, minerals, phytochemicals and other bioactive compounds.

Physical activity, including total physical activity, physical inactivity and surrogate markers for physical activity.

Energy balance, including energy intake and energy expenditure.

Anthropometry, including markers of body composition, markers of distribution of fat, skeletal size and growth in fetal life, infancy or childhood.

Outcome measures

Inclusion: Studies reporting on incidence or prevalence of and/or death from cancer of the skin. We will include all malignancies that are in or go through the epidermis. Cancers of the sweat, sebaceous and follicular glands will be included. Studies of associations in transplant patients will be included.

Exclusion: Studies that focus on pre-malignant cancer (actinic keratoses, intra epidermal carcinoma) and cancer that does not arise from the epidermis, dermis or cornified skin. Therefore, lymphoma of the skin, liposarcoma, melanoma of female genital tract, eye, inner mouth, and central nervous system will be excluded. Kaposi sarcoma of the skin will be excluded because this relates to HIV infection. Any secondary primaries will be excluded. Patients with 'syndromes' such as Gorlin's and Li Fraumeni syndrome will be excluded because these patients are genetically predisposed to (skin) cancer.

Type of studies

Inclusion: All types of epidemiological studies relevant to the research question in all languages.

Exclusion: published abstracts, grey (non-peer-reviewed) literature and unpublished material.
The selection of papers and will be performed according to the specifications in the manual section 13.10, 13.11 (WCRF, 2003). In short, all obtained references will be archived in a Reference Manager Database and duplicates will be removed. A preliminary MEDLINE search found more than 5,000 references, the majority of which are mechanistic studies. For example, in a detailed study of the titles and abstracts 200 references two were found to be definitely relevant and two more to be potentially relevant. It is therefore not practical to screen all titles and abstracts of identified references. Instead, the initial screening of the references will be done using the title only. This will be done by selecting papers whose titles contain key words such as "apoptosis" or "cell line", and then rapidly scanning these titles to confirm that they are not relevant to the review. Once the titles have been screened using this method, the titles and abstracts of remaining papers will be assessed by one reviewer using the inclusion criteria. The results of the search and the first selection will be sent to WCRF. Full papers of all studies that are not clearly ineligible will then be obtained. Two independent reviewers will assess all obtained papers. Disagreements between these reviewers will be resolved by discussion with one of the principle reviewers. The excluded papers and reasons for exclusion are recorded in a second file, and the included papers and study type is recorded in the third file. The second and third file will also be sent to the WCRF.

If a retrieved paper reports outcomes for more than one cancer site, the Review Coordinator will be informed. However, this will only be done for the less obvious
papers, which is the case if the name of the other cancer site is not in the title or in the abstract.

B. Mechanistic data

Will be described after consultation of the Mechanisms Working Group.

$7 \quad$ Data extraction

Data-Extraction Forms will be designed for the review with reference to the Access Database from Leeds. For each study design, a separate form will be made. A study design algorithm will be used for allocating study designs to papers, or, if necessary, for allocating study designs to a particular exposure. Data extraction will include study characteristics that are potential sources of heterogeneity, such as study design, type of cancer and methods of exposure measurement. The country and/or region from which the study population was drawn will be recorded. Data extraction will further include results related to the life course approach; example variables are: birth weight, weight at one year, age at menarche, pubertal status, age at first birth, parity, age of menopause.

Case series will only be extracted if this study design is the only one available for a particular review. Results related to gene-nutrient interactions available in the data are extracted and reported in the report.
One researcher will perform data extraction and a second researcher will check the extraction against the original paper (allocating study designs will be done in duplicate) and differences between reviewer's results will be resolved by returning to the relevant literature, discussion, and when necessary consultation with a third reviewer. The data-extraction forms will be entered into the Access database that was developed by the Leeds team.
Duplicate publication will be identified by cross-checking the study population and location for all studies reporting associations of the same dietary component with the specified cancer. When duplicates are identified, the following rules will be used to decide which results to include in the analysis:

1) Longest follow up if a cohort / biggest sample if a case-control study
2) Most extractable according to order in Table 11 in Manual i.e. categories are to be preferred above means
3) Whole group is reported, not subgroups
4) The best adjustments
5) Combining less subgroups (e.g. combining men and women is to be preferred over male smokers, female smokers, male non-smokers and female non-smokers) We can take different parts of the results from different studies to cover these issues e.g. unadjusted results from one paper and adjusted results from another paper.

8 Data analysis

For each study where this is possible, we will derive estimates (and their standard errors) of the log odds ratio per unit increase in exposure, and log odds ratio per standard deviation increase in exposure, with and without controlling for confounding
variables. This will be done as described in the SLR specification manual, and the paper by Zwahlen et al. on which this is based. We will record whether analyses controlled for the potential confounders listed in Table 1.

Within each forest plot (for each type of study), results will be presented separately for melanoma skin cancer, basal cell carcinoma and squamous cell carcinoma. Where the study does not differentiate these subtypes, broader definitions such as 'NMSC' and 'skin cancer' will be used. Additionally, overall associations combining these will be presented.

When analysing the data, potential effect modifiers in diet-cancer studies, as listed in Table 7 of the SLR specification manual (age, sex, obesity, ethnicity, smoking) will be considered. If there is clear evidence of effect modification, a stratified analysis will be presented.

Table 1. Potential confounding factors in diet-cancer studies

Cancer in general	Site-specific
- Age - Sex - Smoking habits (current and history) - Social class/living conditions/income - Physical activity - BMI - Total energy intake - Alcohol consumption - Ethnicity - Supplement use - Family history of specific cancer (1rst degree relatives) - Other components of diet	- Treatment for other conditions (e.g. immunosuppressive medication) - Exposure to sunlight - Occupation - Latitude/location - Genetic diseases (Xeroderma pigmentosa, Gorlin's syndrome - Skin type, eye colour, hair colour, presence of freckles - Diseases of skin pigmentation

Number of melanocytic naevi (ie moles) and diagnosis with "dysplastic naevus syndrome". Removed from list of potential confounders because it may lie on the causal pathway between diet and disease.

Information on the study characteristics and results of each study will be tabulated using the recommended format for this table as specified in the manual (WCRF, 2003). We will quantify the amount of between-study heterogeneity using I'statistics (Higgins and Thompson, 2002). We will use forest plots to display results from different studies that estimated associations between each component of diet and the specified cancer. Separate plots will display results before and after control for confounding factors.

Where studies are sufficiently homogeneous (I^{2} statistic <0.3 or P value for heterogeneity >0.01), a summary estimate of the log odds ratio per unit, or standardised log odds ratio, will be estimated using fixed-effect meta-analysis. In the presence of heterogeneity, the focus of analyses will be on explanations for betweenstudy variation, but we will also present results from both fixed and random-effects meta-analyses. Dose-response plots will be produced for meta-analysed studies with quantile or category data.

When sufficient number of studies estimate the same association, we will also use sensitivity analysis and meta-regression methods to investigate whether betweenstudy heterogeneity is explained by the study characteristics listed in Box 3 of the SLR specification manual (exposure characteristics, exposure range, sex ratio, adjustment for confounders (Table 1), age at recruitment, follow-up, geographical region, study design and outcome). Experience with previous reviews suggests that such analyses will be appropriate only rarely.

Funnel plots will be used to assess whether evidence of small-study effects (Sterne et al, 2000). If funnel plot asymmetry is observed, careful consideration will be given to its causes as well as the possible impact on the overall estimate of association (Sterne et al, 2001).

9 References

Armstrong BK, English DR. Cutaneous malignant melanoma (Ch 59). In:
Schottenfeld D and Fraumeni JF Jr (eds). Cancer Epidemiology and Prevention 2med. New York/Oxford; Oxford University Press, 1996.

Globocan 2002 (update). Cancer incidence, mortality and prevalence worldwide, Version 1.0, IARC CancerBase No 5. Lyon, IARCPress, 2002.

Higgins JP and Thompson SG. Quantifying heterogeneity in a meta-analysis. Statistics in Medicine 2002; 21: 1539-1558.

Preston DS, Stern RS. Nonmelanoma cancers of the skin. N Engl J Med 1992; 327: 1649-1662.

Sant M, Aareleid T, Berrino F et al. EUROCARE-3: survival of cancer patients diagnosed 1990-1994-results and commentary. Ann Oncol 2003; Suppl 5: v61-v118.

Scotto J, Fears TR, Kraemer KH, Fraumeni JF Jr. Nonmelanoma skin cancer (Ch 60). In: Schottenfeld D and Fraumeni JF Jr (eds). Cancer Epidemiology and Prevention 2 ${ }^{\text {ad }}$ ed. New York/Oxford; Oxford University Press, 1996.

Sterne JAC, Gavaghan D, Egger M. Publication and related bias in meta-analysis: Power of statistical tests and prevalence in the literature. J Clin Epidemiol 2000; 53: 1119-1129.

Sterne JAC. Bradburn MJ. Egger M. Meta-analysis in Stata. In: Egger M, Davey Smith G, Altman DG eds. Systematic Reviews in Health Care. Meta-analysis in context. London: BMJ Books; 2001 (p347-69)

WCRF. Food, nutrition and the prevention of cancer: a global perspective.
Washington; American Institute for Cancer Research, 1997.
WCRF. Second expert report. Food, nutrition, physical activity and the prevention of cancer: a global perspective. Systematic literature review specification manual (version 10). American Institute for Cancer Research, 2003.
http://www.cancerresearchuk.org/aboutcancer/specificcancers/non melanoma skinca ncer?version=1 Accessed 31 May 2005

APPENDIX 1.

Terms for the search strategy for epidemiological literature as specified in the manual (WCRF, 2003):
\#1 diet therapy[MeSH Terms] OR nutrition[MeSH Terms]
\#2 diet[tiab] OR diets[tiab] OR dietetic[tiab] OR dietary[tiab] OR eating[tiab] OR intake[tiab] OR nutrient*[tiab] OR nutrition[tiab] OR vegetarian*[tiab] OR vegan*[tiab] OR "seventh day adventist"[tiab] OR macrobiotic[tiab] OR breastfeed*[tiab] OR breast feed*[tiab] OR breastfed[tiab] OR breast fed[tiab] OR breastmilk[tiab] OR breast milk[tiab]
\#3 food and beverages[MeSH Terms]
\#4 food*[tiab] OR cereal*[tiab] OR grain*[tiab] OR granary[tiab] OR wholegrain[tiab] OR wholewheat[tiab] OR roots[tiab] OR plantain*[tiab] OR tuber[tiab] OR tubers[tiab] OR vegetable*[tiab] OR fruit*[tiab] OR pulses[tiab] OR beans[tiab] OR lentils[tiab] OR chickpeas[tiab] OR legume*[tiab] OR soy[tiab] OR soya[tiab] OR nut[tiab] OR nuts[tiab] OR peanut*[tiab] OR groundnut*[tiab] OR seeds[tiab] OR meat[tiab] OR beef[tiab] OR pork[tiab] OR lamb[tiab] OR poultry[tiab] OR chicken[tiab] OR turkey[tiab] OR duck[tiab] OR fish[tiab] OR fat[tiab] OR fats[tiab] OR fatty[tiab] OR egg[tiab] OR eggs[tiab] OR bread[tiab] OR oils[tiab] OR shellfish[tiab] OR seafood[tiab] OR sugar[tiab] OR syrup[tiab] OR dairy[tiab] OR milk[tiab] OR herbs[tiab] OR spices[tiab] OR chilli[tiab] OR chillis[tiab] OR pepper*[tiab] OR condiments[tiab]
\#5 fluid intake[tiab] OR water[tiab] OR drinks[tiab] OR drinking[tiab] OR tea[tiab] OR coffee[tiab] OR caffeine[tiab] OR juice[tiab] OR beer[tiab] OR spirits[tiab] OR liquor[tiab] OR wine[tiab] OR alcohol[tiab] OR alcoholic[tiab] OR beverage*[tiab] OR ethanol[tiab] OR yerba mate[tiab] OR ilex paraguariensis[tiab]
\#6 pesticides[MeSH Terms] OR fertilizers[MeSH Terms] OR "veterinary drugs"[MeSH Terms]
\#7 pesticide*[tiab] OR herbicide*[tiab] OR DDT[tiab] OR fertiliser*[tiab] OR fertilizer*[tiab] OR organic[tiab] OR contaminants[tiab] OR contaminate*[tiab] OR veterinary drug*[tiab] OR polychlorinated dibenzofuran*[tiab] OR PCDF*[tiab] OR polychlorinated dibenzodioxin*[tiab] OR PCDD*[tiab] OR polychlorinated biphenyl*[tiab] OR PCB*[tiab] OR cadmium[tiab] OR arsenic[tiab] OR chlorinated hydrocarbon*[tiab] OR microbial contamination*[tiab]
\#8 food preservation[MeSH Terms]
\#9 mycotoxin*[tiab] OR aflatoxin*[tiab] OR pickled[tiab] OR bottled[tiab] OR bottling[tiab] OR canned[tiab] OR canning[tiab] OR vacuum pack*[tiab] OR refrigerate*[tiab] OR refrigeration[tiab] OR cured[tiab] OR smoked[tiab] OR preserved[tiab] OR preservatives[tiab] OR nitrosamine[tiab] OR hydrogenation[tiab] OR fortified[tiab] OR additive*[tiab] OR colouring*[tiab] OR coloring*[tiab] OR flavouring*[tiab] OR flavoring*[tiab] OR nitrates[tiab] OR nitrites[tiab] OR solvent[tiab] OR solvents[tiab] OR ferment*[tiab] OR processed[tiab] OR antioxidant*[tiab] OR genetic modif*[tiab] OR genetically modif*[tiab] OR vinyl chloride[tiab] OR packaging[tiab] OR labelling[tiab] OR phthalates[tiab]
\#11 cooking[tiab] OR cooked[tiab] OR grill[tiab] OR grilled[tiab] OR fried[tiab] OR fry[tiab] OR roast[tiab] OR bake[tiab] OR baked[tiab] OR stewing[tiab] OR stewed[tiab] OR casserol*[tiab]

OR broil[tiab] OR broiled[tiab] OR boiled[tiab] OR microwave[tiab] OR microwaved[tiab] OR reheating[tiab] OR reheating[tiab] OR heating[tiab] OR re-heated[tiab] OR heated[tiab] OR poach[tiab] OR poached[tiab] OR steamed[tiab] OR barbecue*[tiab] OR chargrill*[tiab] OR heterocyclic amines[tiab] OR polycyclic aromatic hydrocarbons[tiab]
\#12 dietary carbohydrates[MeSH Terms] OR dietary proteins[MeSH Terms] OR sweetening agents[MeSH Terms]
\#13 salt[tiab] OR salting[tiab] OR salted[tiab] OR fiber[tiab] OR fibre[tiab] OR polysaccharide*[tiab] OR starch[tiab] OR starchy[tiab] OR carbohydrate*[tiab] OR lipid*[tiab] OR linoleic acid*[tiab] OR sterols[tiab] OR stanols[tiab] OR sugar*[tiab] OR sweetener*[tiab] OR saccharin*[tiab] OR aspartame[tiab] OR acesulfame[tiab] OR cyclamates[tiab] OR maltose[tiab] OR mannitol[tiab] OR sorbitol[tiab] OR sucrose[tiab] OR xylitol[tiab] OR cholesterol[tiab] OR protein[tiab] OR proteins[tiab] OR hydrogenated dietary oils[tiab] OR hydrogenated lard[tiab] OR hydrogenated oils[tiab]
\#14 vitamins[MeSH Terms]
\#15 supplements[tiab] OR supplement[tiab] OR vitamin*[tiab] OR retinol[tiab] OR carotenoid*[tiab] OR tocopherol[tiab] OR folate*[tiab] OR folic acid[tiab] OR methionine[tiab] OR riboflavin[tiab] OR thiamine[tiab] OR niacin[tiab] OR pyridoxine[tiab] OR cobalamin[tiab] OR mineral*[tiab] OR sodium[tiab] OR iron[tiab] OR calcium[tiab] OR selenium[tiab] OR iodine[tiab] OR magnesium[tiab] OR potassium[tiab] OR zinc[tiab] OR copper[tiab] OR phosphorus[tiab] OR manganese[tiab] OR chromium[tiab] OR phytochemical[tiab] OR allium[tiab] OR
isothiocyanate*[tiab] OR glucosinolate*[tiab] OR indoles[tiab] OR polyphenol*[tiab] OR phytoestrogen*[tiab] OR genistein[tiab] OR saponin*[tiab] OR coumarin*[tiab]
\#16 physical fitness[MeSH Terms] OR exertion[MeSH Terms] OR physical endurance[MeSH Terms] OR walking[MeSH Terms]
\#17 recreational activit*[tiab] OR household activit*[tiab] OR occupational activit*[tiab] OR physical activit*[tiab] OR physical inactivit*[tiab] OR exercise[tiab] OR energy intake[tiab] OR energy expenditure[tiab] OR energy balance[tiab] OR energy density[tiab]
\#18 growth[MeSH Terms] OR anthropometry[MeSH Terms] OR body composition[MeSH Terms] OR body constitution[MeSH Terms]
\#19 weight loss[tiab] or weight gain[tiab] OR anthropometry[tiab] OR birth weight[tiab] OR birthweight[tiab] OR birth-weight[tiab] OR child development[tiab] OR height[tiab] OR body composition[tiab] OR body mass[tiab] OR BMI[tiab] OR obesity[tiab] OR obese[tiab] OR overweight[tiab] OR over-weight[tiab] OR over weight[tiab] OR skinfold measurement*[tiab] OR skinfold thickness[tiab] OR DEXA[tiab] OR bio-impedence[tiab] OR waist circumference[tiab] OR hip circumference[tiab] OR waist hip ratio*[tiab]

\#20 \#1 OR \#2 OR \#3 OR \#4 OR \#5 OR \#6 OR \#7 OR \#8 OR \#9 OR \#10 OR \#11 OR \#12 OR \#13 OR \#14 OR \#15 OR \#16 OR \#17 OR \#18 OR \#19

Optional:
Apply "Limits: Human" to set \#20
[NB - see main report for details on the risks involved in using this option]

KEY:

[tiab] searches the title and abstract fields only
[MeSH Terms] searches the Medical Subject Headings field only
NB - explosion of MeSH terms is automatic
truncation symbol - searches all words with this combination of letters at the beginning

Appendix 2 Modifications to the protocol

Continuous update of the WCRF-AICR report on diet and cancer

Modifications to the protocol on Skin Cancer.

Continuous update of the epidemiological evidence on food, nutrition, physical activity and the risk of skin cancer. Narrative review.

June 2016
Introduction for the reviewers:
The most common forms of skin cancer are usually divided into two types: melanoma and non-melanoma skin cancer (NMSC).

The most common types of NMSC are squamous cell carcinoma (SCC) and basal cell carcinoma (BCC). Both originate from epidermal cells.

The risks of BCC and SCC have shown to have a positive association with exposure to Solar UV radiation and a negative association with the degree of skin pigmentation.

It is common for someone to have multiple NMSC, whereas that is rare for other neoplasms. It will be possible to find studies in which the NMSC is not the first diagnosed (e.g. prevalence).

Summary of judgements of the 2007 Second Expert Report on skin cancer

- Probable: arsenic in drinking water (search if updated review has been published)
- Limited suggestive decreases: retinol
- Limited suggestive increases: selenium supplements

1. Research question

The research topic is:
The associations between food, nutrition and physical activity and the risk of skin cancer.

The main objective is:
To summarize the evidence from prospective studies and randomised controlled trials on the association between foods, nutrients, vitamin, minerals, physical activity, overweight and obesity with the risk of skin cancers in men and women.

2. Review team

Name	Current position at IC	Role within team
Teresa Norat	Principal Research Fellow	Principal investigator
Snieguole	Research Assistant	Supervisor of data extraction and report preparation. Vingeliene
Elli Polemiti	Research Assistant	Reviewer
Christophe Stevens	Database manager	Systematic search, article selection, data extraction

3. Timeline

List of tasks and deadlines for the continuous update on skin cancer:

Task	Deadline
Start Medline search of relevant articles published from June 30 2005	30 June 2016
Select papers for data extraction	30 August 2016
End data extraction	15 October 2016
Prepare narrative review and do limited number of analysis	October-November
2016 Finish writing report	20 December 2016
Send report for review to CUP secretariat	20 December 2016

4. Search strategy

Search strategy for skin cancer

a) Pubmed

Searching for all studies relating to skin:

1. Exp Skin neoplasms
2. Exp Melanoma
3. Exp Basal cell carcinoma
4. Exp squamous cell carcinoma
5. skin adj4 (cancer\$ or neoplasm\$ or tumo?r\$).tw
6. basal cell adj4 carcinoma\$.tw
7. squamous cell adj4 carcinoma\$.tw
8. melanoma\$.tw
9. text word for basal cell epithelioma
10. text word for squamous cell epithelioma
11. or/1-11
b) Hand searching for cited references
b1) The review team will also hand search the references of reviews and metaanalyses identified during the search.
b2) The database manager will identify the papers than are in the database for more than one cancer site ("multi-cancer paper"). The database manager will check if data on skin cancer has been extracted from these papers. The database manager will give that references of the "multi-cancer" papers for which no data on skin cancer was extracted to the reviewers who will verify in the corresponding pdf that the paper has no data on skin cancer.

5. Study selection criteria for the update

5.1 Inclusion criteria

The articles to be included in the review:

- Have to present results on an exposure/intervention relevant to the CUP
- Must have as outcome of interest incidence or mortality for skin cancer*
- Have to present results from an epidemiologic study in men and women of one of the following types ${ }^{+}$:
- Randomized controlled trial
- Group randomized controlled trial (Community trial)
- Prospective cohort study
- Nested case-control study
- Case-cohort study
- Historical cohort study
- Have any publication date
* In the 2005 SLR the most frequent skin cancers identified were:

1) basal cell carcinoma, basal cell epithelioma
2) squamous cell carcinoma of skin, squamous cell epithelioma
3) melanoma, cutaneous melanoma (sometimes subdivided in inasive melanoma and melanoma in situ)
4) skin cancer, skin neoplasms, skin tumour, skin tumour, non melanoma skin cancer (usually melanoma is not included in this category).

5.2 Exclusion criteria

Studies with cases of anatomical localisations other than to skin cancer. Example: ocular melanoma.

Studies of skin cancer in patients with Aids (e.g. Kaposi's sarcoma and AIDs)

6. Article selection

All references obtained with the search in PubMed will be imported in a Reference Manager Database using the filter Medline.

Additionally, customized fields will be implemented in the RefMan database (see Section 6.1).

The article selection will follow three steps:

1. The database manager did the search and exported it to RefMan. The database manager tagged the field User Def 1 (exclusion) indicating the articles that should be excluded based on an algorithm under test.
2. The reviewers will assess first the titles and abstracts of the studies not excluded by the algorithm.
3. If a paper reports outcomes for more than one cancer site, the reviewer will extract the data for the other cancer sites in the database, using the WCRF code of the cancers in question

6.1 Reference Manager Files

Five customized fields will be created in the reference manager database. They will be used to indicate if the study was selected upon reading of title, abstract, or entire article, the study design of included articles, the status of data extraction of the included article, the WCRF code assigned and for excluded articles, the reason for exclusion (Table 1)
Table 1. User-defined fields to be created in Reference Manager during article selection and data extraction.

Field	Use	Terms used	Notes
User Def 1	Indicate if article is relevant to the CUP review	Excludedabti; Included; excluded;	Excludedabti means excluded basing on abstract and title of the article. Without "abti" means full text is reviewed.
User Def 2	If excluded, reasons	No associations of interest; No original data/duplicates; Commentary; Foreign article in [language]	No associations of interest include situations such as "out of the research topic","no measure of relationship", "no specific outcome"

		Not adequate study design Pooled studies/meta- analyses	
User Def 3	Study design	Randomized controlled trial (RCT) Prospective cohort study Retrospective cohort study Nested case-control study Case cohort study Population-based case- control study Hospital-based case- control study Case-control study- other type of controls or control type unclear	The CUP only extract data from RCT, cohort/cohort based studies. Case-control studies are identified but the data is not extracted to the database.
User Def 4	WCRF code of the article	This is done during the data extraction	WCRF codes are assigned automatically in the application when performing extraction.
User Def 5	Other notes, name of study	Indicate if includes more than one anatomical localization	

7. Data extraction

(Due to time limitations, the review team may use an alternative quick data extraction, in which the study author, publication year, study name, exposures investigated -one per column- will be extracted in an excel file. This is because the CUP review will be only narrative. No meta-analysis will be included. In this case the data extraction will be done after the report is prepared.

Meta-analysis of case-control studies, cohort studies and RCT will be included in the CUP review)

The IC team will update the WCRF-AICR central database.
Data extracted will include study design, characteristics of study population, mean age, distribution by sex, country, recruitment year, methods of exposure assessment, definition of exposure, definition of outcome, method of outcome assessment, study size, length of follow up, lost to follow-up, analytical methods and whether methods for correction of measurement error were used.

The ranges, means or median values for each level of the exposure categories will be extracted as reported in the paper.

For each result, the reviewer will extract the covariates included in the analytical model and the matching variables. Measures of association, number of cases and number of comparison individuals or person years for each category of exposure will be extracted for each model used in the analyses. Stratified and subgroup analyses, and results of interaction analyses will also be extracted.

When indicated, the reviewer should also extract for each result:

- Type of cancer:

Basal cancer
SCC
NMSC
Melanoma
All skin cancer
-Whether the skin cancer is the first (incident) or not
(This is based in the 2005 SLR. Other classifications may be identified and the protocol amended correspondingly)

Note on adjustment factors: vary important not to miss any data related to sun exposure or skin colour.

7.1 Study identifier

The unique identifier for an article will be constructed using a 3-letter code to represent the cancer site: SKI (skin cancer), followed by a 5 -digit number that will be allocated in sequence automatically by the interface during data extraction.

Appendix 3 Exposure codes

1 Patterns of diet

1.1 Regionally defined diets

*1.1.1 Mediterranean diet

Include all regionally defined diets, evident in the literature. These are likely to include Mediterranean, Mesoamerican, oriental, including Japanese and Chinese, and "western type".
1.2 Socio-economically defined diets

To include diets of low-income, middle-income and high-income countries (presented, when available in this order). Rich and poor populations within low-income, middleincome and high-income countries should also be considered. This section should also include the concept of poverty diets (monotonous diets consumed by impoverished populations in the economically-developing world mostly made up of one starchy staple, and may be lacking in micronutrients).

1.3 Culturally defined diets

To include dietary patterns such as vegetarianism, vegan diets, macrobiotic diets and diets of Seventh-day Adventists.

1.4 Individual level dietary patterns

To include work on factor and cluster analysis, and various scores and indexes (e.g. diet diversity indexes) that do not fit into the headings above.

1.5 Other dietary patterns

Include under this heading any other dietary patterns present in the literature, that are not regionally, socio-economically, culturally or individually defined.

1.6 Breastfeeding

1.6.1 Mother

Include here also age at first lactation, duration of breastfeeding, number of children breast-fed

1.6.2 Child

Results concerning the effects of breastfeeding on the development of cancer should be disaggregated into effects on the mother and effects on the child. Wherever possible detailed information on duration of total and exclusive breastfeeding, and of complementary feeding should be included.

1.7 Other issues

For example results related to diet diversity, meal frequency, frequency of snacking, dessert-eating and breakfast-eating should be reported here. Eating out of home should be reported here.

2 Foods

*2.0.1 Plant foods

2.1 Starchy foods

2.1.1 Cereals (grains)

* 2.1.1.0.1 Rice, pasta, noodles
*2.1.1.0.2 Bread
*2.1.1.0.3 Cereal
* Report under this subheading the cereals when it is not specified if they are wholegrain or refined cereals (e.g.fortified cereals)
2.1.1.1 Wholegrain cereals and cereal products
* 2.1.1.1.1 Wholegrain rice, pasta, noodles
*2.1.1.1.2 Wholegrain bread
*2.1.1.1.3 Wholegrain cereal
2.1.1.2 Refined cereals and cereal products
* 2.1.1.2.1 Refined rice, pasta, noodles
* 2.1.1.2.2 Refined bread
*2.1.1.2.3 Refined cereal
2.1.2 Starchy roots, tubers and plantains
* 2.1.2.1 Potatoes
2.1.3 Other starchy foods
*Report polenta under this heading
2.2 Fruit and (non-starchy) vegetables

Results for "fruit and vegetables" and "fruits, vegetables and fruit juices" should be reported here. If the definition of vegetables used here is different from that used in the first report, this should be highlighted.

2.2.1 Non-starchy vegetables

This heading should be used to report total non-starchy vegetables. If results about specific vegetables are reported they should be recorded under one of the subheadings below or if not covered, they should be recorded under '2.2.1.5 other'.
2.2.1.1 Non-starchy root vegetables and tubers

*2.2.1.1.1 Carrots

2.2.1.2 Cruciferous vegetables

2.2.1.3 Allium vegetables

2.2.1.4 Green leafy vegetables (not including cruciferous vegetables)
2.2.1.5 Other non-starchy vegetables

*2.2.1.5.13 Tomatoes

*2.2.1.5.1 Fresh beans (e.g. string beans, French beans) and peas

Other non-starchy vegetables' should include foods that are botanically fruits but are eaten as vegetables, e.g. courgettes. In addition vegetables such as French beans that do not fit into the other categories, above.

If there is another sub-category of vegetables that does not easily fit into a category above eg salted root vegetables (ie you do not know if it is starchy or not) then report under 2.2.1.5. and note the precise definition used by the study. If in doubt, enter the exposure more than once in this way.

2.2.1.6 Raw vegetables

This section should include any vegetables specified as eaten raw. Results concerning specific groups and type of raw vegetable should be reported twice i.e. also under the relevant headings 2.2.1.1-2.2.1.5.

2.2.2 Fruits

*2.2.2.0.1 Fruit, dried
*2.2.2.0.2 Fruit, canned
*2.2.2.0.3 Fruit, cooked
2.2.2.1 Citrus fruit
2.2.2.1.1 Oranges
2.2.2.1.2 \quad Other citrus fruits (e.g. grapefruits)

2.2.2.2 Other fruits

*2.2.2.2.1 Bananas
*2.2.2.2.4 Melon
*2.2.2.2.5 Papaya
*2.2.2.2.7 Blueberries, strawberries and other berries
*2.2.2.2.8 Apples, pears
*2.2.2.2.10 Peaches, apricots, plums
*2.2.2.2.11 Grapes
If results are available that consider other groups of fruit or a particular fruit please report under 'other', specifying the grouping/fruit used in the literature.

2.3 Pulses (legumes)

*2.3.1 Soya, soya products
*2.3.1.1 Miso, soya paste soup
*2.3.1.2 Soya juice
*2.3.1.4 Soya milk
*2.3.1.5 Tofu
*2.3.2 Dried beans, chickpeas, lentiles

*2.3.4 Peanuts, peanut products

Where results are available for a specific pulsellegume, please report under a separate heading.

2.4 Nuts and Seeds

To include all tree nuts and seeds, but not peanuts (groundnuts). Where results are available for a specific nut/seed, e.g. brazil nuts, please report under a separate heading.
2.5 Meat, poultry, fish and eggs

Wherever possible please differentiate between farmed and wild meat, poultry and fish.

2.5.1 Meat

This heading refers only to red meat: essentially beef, lamb, pork from farmed domesticated animals either fresh or frozen, or dried without any other form of preservation. It does not refer to poultry or fish.

Where there are data for offal (organs and other non-flesh parts of meat) and also when there are data for wild and non-domesticated animals, please show these separately under this general heading as a subcategory.

2.5.1.1 Fresh Meat

2.5.1.2 Processed meat
*2.5.1.2.1 Ham
*2.5.1.2.1.7 Burgers
*2.5.1.2.8 Bacon
*2.5.1.2.9 Hot dogs
*2.5.1.2.10 Sausages

Repeat results concerning processed meat here and under the relevant section under 4. Food Production and Processing. Please record the definition of 'processed meat' used by each study.
2.5.1.3 Red meat
*2.5.1.3.1 Beef
*2.5.1.3.2 Lamb
*2.5.1.3.3 Pork
*2.5.1.3.6 Horse, rabbit, wild meat (game)
Where results are available for a particular type of meat, e.g. beef, pork or lamb, please report under a separate heading.

Show any data on wild meat (game) under this heading as a separate sub-category.

2.5.1.4 Poultry

Show any data on wild birds under this heading as a separate sub-category.
*2.5.1.5 Offals, offal products (organ meats)
2.5.2 Fish
*2.5.2.3 Fish, processed (dried, salted, smoked)
*2.5.2.5 Fatty Fish
*2.5.2.7 Dried Fish
*2.5.2.9 White fish, lean fish
2.5.3 Shellfish and other seafood
2.5.4 Eggs
2.6 Fats, oils and sugars
2.6.1 Animal fats
*2.6.1.1 Butter
*2.6.1.2 Lard
*2.6.1.3 Gravy
*2.6.1.4 Fish oil
2.6.2 Plant oils
2.6.3 Hydrogenated fats and oils
*2.6.3.1 Margarine
Results concerning hydrogenated fats and oils should be reported twice, here and under 4.3.2 Hydrogenation

2.6.4 Sugars

This heading refers to added (extrinsic) sugars and syrups as a food, that is refined sugars, such as table sugar, or sugar used in bakery products.
2.7 Milk and dairy products

Results concerning milk should be reported twice, here and under 3.3 Milk
*2.7.1 Milk, fresh milk, dried milk
*2.7.1.1 Whole milk, full-fat milks
*2.7.1.2 Semi skimmed milk, skimmed milk, low fat milk, 2% Milk
*2.7.2 Cheese
*2.7.2.1 Cottage cheese
*2.7.2.2 Cheese, low fat
*2.7.3 Yoghurt, buttermilk, sour milk, fermented milk drinks
*2.7.3.1 Fermented whole milk
*2.7.3.2 Fermented skimmed milk
*2.7.7 Ice cream
2.8 Herbs, spices, condiments

*2.8.1 Ginseng

*2.8.2 Chili pepper, green chili pepper, red chili pepper
2.9 Composite foods

Eg, snacks, crisps, desserts, pizza. Also report any mixed food exposures here ie if an exposure is reported as a combination of 2 or more foods that cross categories (eg bacon and eggs). Label each mixed food exposure.
*2.9.1 Cakes, biscuits and pastry
*2.9.2 Cookies
*2.9.3 Confectionery
*2.9.4 Soups
*2.9.5 Pizza
*2.9.6 Chocolate, candy bars
*2.9.7 Snacks

3 Beverages

3.1 Total fluid intake
3.2 Water
3.3 Milk

For results concerning milk please report twice, here and under 2.7 Milk and Dairy Products.

3.4 Soft drinks

Soft drinks that are both carbonated and sugary should be reported under this general heading. Drinks that contain artificial sweeteners should be reported separately and labelled as such.

3.4.1 Sugary (not carbonated)

3.4.2 Carbonated (not sugary)

The precise definition used by the studies should be highlighted, as definitions used for various soft drinks vary greatly.
*3.5 Fruit and vegetable juices
*3.5.1 Citrus fruit juice
*3.5.2 Fruit juice
*3.5.3 Vegetable juice
*3.5.4 Tomato juice
3.6 Hot drinks
3.6.1 Coffee
3.6.2 Tea

Report herbal tea as a sub-category under tea.
3.6.2.1 Black tea
3.6.2.2 Green tea
3.6.3 Maté
3.6.4 Other hot drinks
3.7 Alcoholic drinks
3.7.1 Total
3.7.1.1 Beers
3.7.1.2 Wines
3.7.1.3 Spirits
3.7.1.4 Other alcoholic drinks

4 Food production, preservation, processing and preparation

4.1 Production
4.1.1 Traditional methods (to include 'organic')
4.1.2 Chemical contaminants

Only results based on human evidence should be reported here (see instructions for dealing with mechanistic studies). Please be comprehensive and cover the exposures listed below:
4.1.2.1 Pesticides
4.1.2.2 DDT
4.1.2.3 Herbicides
4.1.2.4 Fertilisers
4.1.2.5 Veterinary drugs
4.1.2.6 Other chemicals
4.1.2.6.1 Polychlorinated dibenzofurans (PCDFs)
4.1.2.6.2 Polychlorinated dibenzodioxins (PCDDs)
4.1.2.6.3 Polychlorinated biphenyls (PCBs)
4.1.2.7 Heavy metals
4.1.2.7.1 Cadmium
4.1.2.7.2 Arsenic
4.1.2.8 Waterborne residues
4.1.2.8.1 Chlorinated hydrocarbons
4.1.2.9 Other contaminants

Please also report any results that cover the cumulative effect of low doses of contaminants in this section.

4.2 Preservation

4.2.1 Drying
4.2.2 Storage
4.2.2.1 Mycotoxins
4.2.2.1.1 Aflatoxins
4.2.2.1.2 Others
4.2.3 Bottling, canning, vacuum packing
4.2.4 Refrigeration
4.2.5 Salt, salting
4.2.5.1 Salt
4.2.5.2 Salting
4.2.5.3 Salted foods
4.2.5.3.1 Salted animal food
4.2.5.3.2 Salted plant food
4.2.6 Pickling
4.2.7 Curing and smoking
4.2.7.1 Cured foods
4.2.7.1.1 Cured meats
4.2.7.1.2 Smoked foods

For some cancers e.g. colon, rectum, stomach and pancreas, it may be important to report results about specific cured foods, cured meats and smoked meats. N nitrososamines should also be covered here.

4.3 Processing

4.3.1 Refining

Results concerning refined cereals and cereal products should be reported twice, here and under 2.1.1.2 refined cereals and cereal products.

4.3.2 Hydrogenation

Results concerning hydrogenated fats and oils should be reported twice, here and under 2.6.3 Hydrogenated fats and oils

4.3.3 Fermenting

4.3.4 Compositional manipulation
4.3.4.1 Fortification
4.3.4.2 Genetic modification
4.3.4.3 Other methods
4.3.5 Food additives

4.3.5.1 Flavours

Report results for monosodium glutamate as a separate category under 4.3.5.1 Flavours.

4.3.5.2 Sweeteners (non-caloric)

4.3.5.3 Colours
4.3.5.4 Preservatives
4.3.5.4.1 Nitrites and nitrates
4.3.5.5 Solvents
4.3.5.6 Fat substitutes
4.3.5.7 Other food additives

Please also report any results that cover the cumulative effect of low doses of additives.
Please also report any results that cover synthetic antioxidants
4.3.6
Packaging
4.3.6.1 Vinyl chloride
4.3.6.2 Phthalates

4.4 Preparation

4.4.1 Fresh food
4.4.1.1 Raw

Report results regarding all raw food other than fruit and vegetables here. There is a separate heading for raw fruit and vegetables (2.2.1.6).

4.4.1.2 Juiced

4.4.2 Cooked food

4.4.2.1 Steaming, boiling, poaching
4.4.2.2 Stewing, casseroling
4.4.2.3 Baking, roasting
4.4.2.4 Microwaving

4.4.2.5 Frying

4.4.2.6 Grilling (broiling) and barbecuing

4.4.2.7 Heating, re-heating

Some studies may have reported methods of cooking in terms of temperature or cooking medium, and also some studies may have indicated whether the food was cooked in a direct or indirect flame. When this information is available, it should be included in the SLR report.

Results linked to mechanisms e.g. heterocyclic amines, acrylamides and polycyclic aromatic hydrocarbons should also be reported here. There may also be some literature on burned food that should be reported in this section.

5 Dietary constituents

Food constituents' relationship to outcome needs to be considered in relation to dose and form including use in fortified foods, food supplements, nutrient supplements and specially formulated foods. Where relevant and possible these should be disaggregated.

5.1 Carbohydrate

5.1.1 Total carbohydrate

5.1.2 Non-starch polysaccharides/dietary fibre
5.1.2.1 Cereal fibre
5.1.2.2 Vegetable fibre
5.1.2.3 Fruit fibre

5.1.3 Starch

5.1.3.1 Resistant starch

5.1.4 Sugars

*5.1.5 Glycemic index, glycemic load
This heading refers to intrinsic sugars that are naturally incorporated into the cellular structure of foods, and also extrinsic sugars not incorporated into the cellular structure of foods. Results for intrinsic and extrinsic sugars should be presented
separately. Count honey and sugars in fruit juices as extrinsic. They can be natural and unprocessed, such as honey, or refined such as table sugar. Any results related to specific sugars e.g. fructose should be reported here.

5.2 Lipids

5.2.1 Total fat
5.2.2 Saturated fatty acids
5.2.3 Monounsaturated fatty acids
5.2.4 Polyunsaturated fatty acids

5.2.4.1 n-3 fatty acids

Where available, results concerning alpha linolenic acid and long chain n-3 PUFA should be reported here, and if possible separately.
5.2.4.2 n-6 fatty acids
5.2.4.3 Conjugated linoleic acid
5.2.5 Trans fatty acids
5.2.6 Other dietary lipids, cholesterol, plant sterols and stanols.

For certain cancers, e.g. endometrium, lung, and pancreas, results concerning dietary cholesterol may be available. These results should be reported under this section.

5.3 Protein

5.3.1 Total protein
5.3.2 Plant protein
5.3.3 Animal protein
5.4 Alcohol

This section refers to ethanol the chemical. Results related to specific alcoholic drinks should be reported under 3.7 Alcoholic drinks. Past alcohol refers, for example, to intake at age 18, during adolescence, etc.
*5.4.1 Total Alcohol (as ethanol)
*5.4.1.1Alcohol (as ethanol) from beer
*5.4.1.2Alcohol (as ethanol) from wine
*5.4.1.3Alcohol (as ethanol) from spirits
*5.4.1.4Alcohol (as ethanol) from other alcoholic drinks

* 5.4.1.5 Total alcohol (as ethanol), lifetime exposure
* 5.4.1.6 Total alcohol (as ethanol), past
5.5 Vitamins
*5.5.0 Vitamin supplements
*5.5.0.1 Vitamin and mineral supplements
*5.5.0.2 Vitamin B supplement

5.5.1 Vitamin A

5.5.1.1 Retinol
5.5.1.2 Provitamin A carotenoids
5.5.2 Non-provitamin A carotenoids

Record total carotenoids under 5.5.2 as a separate category marked Total Carotenoids.
5.5.3 Folates and associated compounds
*5.5.3.1 Total folate
*5.5.3.2 Dietary folate
*5.5.3.3 Folate from supplements
Examples of the associated compounds are lipotropes, methionine and other methyl donors.
5.5.4 Riboflavin
5.5.5 Thiamin (vitamin B1)
5.5.6 Niacin
5.5.7 Pyridoxine (vitamin B6)
5.5.8 Cobalamin (vitamin B12)
5.5.9 Vitamin C
5.5.10 Vitamin D (and calcium)
5.5.11 Vitamin E
5.5.12 Vitamin K
5.5.13 Other

If results are available concerning any other vitamins not listed here, then these should be reported at the end of this section. In addition, where information is available concerning multiple vitamin deficiencies, these should be reported at the end of this section under 'other'.
5.6 Minerals
5.6.1 Sodium
5.6.2 Iron
5.6.3 Calcium (and Vitamin D)
5.6.4 Selenium
5.6.5 Iodine
5.6.6 Other

Results are likely to be available on other minerals e.g. magnesium, potassium, zinc, copper, phosphorus, manganese and chromium for certain cancers. These should be reported at the end of this section when appropriate under 'other'.
5.7 Phytochemicals
5.7.1 Allium compounds
5.7.2 Isothiocyanates
5.7.3 Glucosinolates and indoles
5.7.4 Polyphenols
5.7.5 Phytoestrogens eg genistein
5.7.6 Caffeine
5.7.7 Other

Where available report results relating to other phytochemicals such as saponins and coumarins. Results concerning any other bioactive compounds, which are not phytochemicals should be reported under the separate heading 'other bioactive compounds'. Eg flavonoids, isoflavonoids, glycoalkaloids, cyanogens, oligosaccharides and anthocyanins should be reported separately under this heading.

5.8 Other bioactive compounds

6 Physical activity

6.1 Total physical activity (overall summary measures)
6.1.1 Type of activity
6.1.1.1 Occupational
6.1.1.2 Recreational
6.1.1.3 Household
6.1.1.4 Transportation
6.1.2 Frequency of physical activity
*6.1.2.1 Frequency of occupational physical activity
*6.1.2.2 Frequency of recreational physical activity
6.1.3 Intensity of physical activity
*6.1.3.1 Intensity of occupational physical activity
*6.1.3.2 Intensity of recreational physical activity
6.1.4 Duration of physical activity
*6.1.4.1Duration of occupational physical activity
*6.1.4.2Duration of recreational physical activity

6.2 Physical inactivity

6.3 Surrogate markers for physical activity e.g. occupation

7 Energy balance

7.1 Energy intake
*7.1.0.1 Energy from fats
*7.1.0.2 Energy from protein
*7.1.0.3 Energy from carbohydrates
*7.1.0.4 Energy from alcohol
*7.1.0.5 Energy from all other sources
7.1.1 Energy density of diet
7.2 Energy expenditure

8 Anthropometry
8.1 Markers of body composition
8.1.1 BMI
8.1.2 Other weight adjusted for height measures
8.1.3 Weight
8.1.4 Skinfold measurements
8.1.5 Other (e.g. DEXA, bio- impedance, etc)
8.1.6 Change in body composition (including weight gain)
8.2 Markers of distribution of fat
8.2.1 Waist circumference
8.2.2 Hips circumference
8.2.3 Waist to hip ratio
8.2.4 Skinfolds ratio
8.2.5 Other e.g. CT, ultrasound
8.3 Skeletal size
8.3.1 Height (and proxy measures)
8.3.2 Other (e.g. leg length)
8.4 Growth in fetal life, infancy or childhood
8.4.1 Birthweight,
8.4.2 Weight at one year

Appendix 4 Arsenic from diet and skin cancer risk. Main characteristics of case-control and ecologic studies.

Case-control studies

Author, Year, WCRF Code, Country	Study characteristics	Cases/ Controls	Exposure assessment	Outcome	Comparison	RR ($\mathbf{9 5 \%} \mathbf{C I}$) Ptrend	Adjustment factors
Gilbert- Diamond,2013 USA	Population-based casecontrol study in New Hampshire, a region with moderate arsenic exposure through private well water and diet	470 invasive SCC, 447 controls	Urinary arsenic Median $4.76 \mu \mathrm{~g} / \mathrm{L}$	Histologically confirmed incident SCC (20032009)	For $1 \ln$ transformed $\mu /$ L increase	1.37 (1.04-1.08)	Uurinary creatinine, sex, age, BMI, education, smoking, skin reaction to chronic sun exposure (excluded participants who consumed seafood 2 days prior to urine collection)
Leonardi, 2012 Hungary, Romania, and Slovakia	ASHRAM study Hospital-based casecontrol SCC study in 3 countries, a region with moderate arsenic exposure through drinking water	$\begin{aligned} & 529 \mathrm{BCC}, 540 \\ & \text { controls } \end{aligned}$	Arsenic in drinking water based on national registries and residence of study participants Median 1.2 (0.7-13.8) $\mu \mathrm{g} / \mathrm{L}$	Histologically confirmed, consecutively diagnosed BCC (2003-2004)	For each 10 $\mu \mathrm{g} /$ L increase	Lifetime concentration 1.18 (1.08-1.28) Cumulative dose 1.10 (1.01-1.19)	Matched on sex, age, and area of residence; adjusted for sex, age, education, area of residence, skin response to 1 hour of midday sun, skin complexion
Rosales-Castillo, 2004 Mexico	Hospital-based casecontrol study. Controls recruited from dermatology clinics	42 NMSC, 48 controls	Cumulative exposure derived from 1 urine arsenic measure and participant's residential history	Prevalent, clinically diagnosed NMSC	High vs. low	4.53 (0.63-32.76)	Sex, age, sun exposure; association modified by HPV infection; arsenic exposure
Chen, 2003 Southwest Taiwan	Hospital-based casecontrol study January 1996 - December 1999	$76 \text { NMSC, } 224$ controls	Cumulative arsenic from artesian well water concentration and duration of drinking mean=8.14 (SD 15.48) mg / L-year	Pathologically diagnosed, incident skin cancer (1996-1999)	$\begin{aligned} & \text { mg-L/year } \\ & 0-2 \\ & >2-15 \\ & >15 \end{aligned}$	$\begin{gathered} 1.00 \text { (reference) } \\ 1.87(0.79-4.45) \\ 2.99(1.30-6.87) \\ \text { P for trend= }=0.007 \end{gathered}$	Age, sex, BMI, sun exposure, cigarette smoking, alcohol consumption, and education

Author, Year, WCRF Code, Country	Study characteristics	Cases/ Controls	Exposure assessment	Outcome	Comparison	$\begin{aligned} & \text { RR (} \mathbf{~} 95 \% \text { CI) } \\ & \text { Ptrend } \end{aligned}$	Adjustment factors
Karagas, 2001 USA	Population -based case-control study in New Hampshire	587 BCC, 284 invasive SCC - BD excluded, 524 controls	Histologically confirmed incident BCC and SCC (1993-1995)	Toenails Geometric mean $=0.094$ (range=0.01-0.81) $\mu \mathrm{g} / \mathrm{g}$ [any source of exposure to arsenic]		No increased risk of SCC or BCC	Matched on sex and age
Hsueh, 1995 Southwest Taiwan		1081 persons (66 skin cancer cases, including BD)	Prevalent skin cancer (90 \% BD, and 91 \% BCC and SCC histologically confirmed) (19881989)	Water $($ Median range $=$ $0.70-0.93 \mathrm{ppm}$)	$\begin{aligned} & \text { Average (ppm) } \\ & 0 \\ & 0.1-0.7 \\ & >0.7 \\ & \text { Cumulative } \\ & \text { (ppm-yrs) } \\ & <4 \\ & 5-24 \\ & >24 \end{aligned}$	1.00 (reference) 3.45 (0.70-17.0) 5.04 (1.07-23.8) P for trend <0.05 1.00 (reference) 8.90 (1.07-73.75) 13.74 (1.69- 111.64)	Age, sex

Ecologic and cross-sectional studies

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{aligned} & \text { RR (95\% Cl) } \\ & \text { Ptrend } \end{aligned}$	Adjustment factors
Cheng, 2016, Taiwan	Retrospective study in black foot disease endemic (BFDEA) areas in Taiwan	11191 cases SCC, 13684 cases BCC	Cases with pathology diagnosis, National Taiwan Cancer Registry	Exposure: living in BFDE area. Levels of arsenic in water were not assessed. Arseniccontaining well-water drinking stopped in the 1970s. Cases identified from 1979-2007	$\begin{aligned} & \text { Skin SCC, } \\ & \text { BCC } \end{aligned}$	Living in BFDEA vd Taiwan	SMR (morbidity) SCC (all period) 4.42 (3.94-4.96) SCC (1979-1983) 5.50 (3.26-8.69) SCC (2004-2007) 3.80 (3.04-4.70) BCC (all period) 3.20 2.83-3.60 BCC (1979-1983) 4.82 (2.20-9.15) BCC (2004-2007) 1.73 (1.30-2.27)	SMR of cutaneous SCC and BCC declined gradually following water source replacement and the withdrawal of arsenic exposure from artesian well water
Navoni, 2012 Argentina	Study in Buenos Aires			Arsenic levels assessed in 152 samples from 52 counties in Buenos Aires 2003-2008 Range 0,3-187 $\mu \mathrm{g} / \mathrm{L}$, median $40 \mu \mathrm{~g} / \mathrm{L}$		Area with medium/high arsenic concentration compared to low arsenic concentration area	SMR Women 3.9 (2.9-5.2) Men 3.1 (2.5-3.9)	
Wheeler, 2013 UK	$\begin{aligned} & 326 \text { areas of England } \\ & \text { 2006-2008 } \end{aligned}$	$\begin{aligned} & \hline 216497 \\ & \text { NMSC } \end{aligned}$		Mean stream arsenic sediments	NMSC rates	Mean ppm in stream 11-14 15-19 20+	Regression coefficient $\begin{aligned} & 0 \text { (ref) } \\ & 0.32(8.99-9.64) \\ & 5.85(17.90,6.19) \end{aligned}$	Age, sex, UV levels

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{gathered} \text { RR }(\mathbf{9 5 \%} \% \mathbf{C l}) \\ \text { Ptrend } \end{gathered}$	Adjustment factors
Knoleboch, 2006 USA	6,669 residents Wisconsin's Fox River Valley, which contains a large vein of arsenic-rich minerals in a bedrock layer	74 cases	Self reported history of skin cancer	Arsenic in samples of 2,233 household wells of study participants during July 2000 to January 2002	Skin cancer	$\mu \mathrm{g} / \mathrm{L}$ >10 $1.0-9.9 \mathrm{lg} / \mathrm{l}$ <1 (referent)	$\begin{aligned} & 1.92(1.01-3.68) \\ & 1.81(1.10-3.14) \\ & 1 \end{aligned}$	Age, gender, smoking
Corey, 2005 Argentina (grey literature cited by Bardach, 2015)	Study in 1999, Santa Fe			Arsenic in public water	Skin cancer	$>50 \mu \mathrm{~g} / / \mathrm{L}$ compared to < $50 \mu \mathrm{~g} /$	Mortality Rate Ratio 1.89 (1.15-3.09)	
Guo, 2001 SKI01124 Taiwan	Taiwan 1980-1989, 243 townships in Taiwan	1415 men, 954 women	National cancer Registry	Nationwide census survey Arsenic in drinking water	Basal cell carcinoma Men	$\begin{gathered} \text { Arsenic level } \\ (\mathrm{mcg} / \mathrm{L}) \\ 0.05-0.08 \\ 0.09-0.16 \\ 0.17-0.32 \\ 0.33-0.64 \\ >0.64 \end{gathered}$	Rate difference with population size 0.004 -0.017 0.006 -0.024 $0.128^{* *}$	Age, urbanization index Note $* *$ indicates $\mathrm{p}<0.01$
					Basal cell carcinoma Women	$\begin{gathered} 0.05-0.08 \\ 0.09-0.16 \\ 0.17-0.32 \\ 0.33-0.64 \\ >0.64 \end{gathered}$	$\begin{gathered} -0.012 \\ 0.018 \\ 0.04 \\ 0.016 \\ 0.027 \end{gathered}$	
					$\begin{aligned} & \text { Squamous } \\ & \text { cell } \\ & \text { carcinoma } \\ & \text { Men } \end{aligned}$	$\begin{gathered} 0.05-0.08 \\ 0.09-0.16 \\ 0.17-0.32 \\ 0.33-0.64 \\ >0.64 \end{gathered}$	$\begin{gathered} 0.024 \\ -0.026 \\ 0.073^{* *} \\ -0.100^{* *} \\ 0.155 * * \end{gathered}$	
					Squamous	0.05-0.08	-0.006	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{aligned} & \text { RR }(95 \% \text { CI) } \\ & \text { Ptrend } \end{aligned}$	Adjustment factors
					cell carcinoma Women	$\begin{gathered} 0.09-0.16 \\ 0.17-0.32 \\ 0.33-0.64 \\ >0.64 \end{gathered}$	$\begin{gathered} 0.006 \\ 0.016 \\ -0.064^{* *} \\ 0.212 * \end{gathered}$	
					Melanoma Men	$\begin{gathered} 0.05-0.08 \\ 0.09-0.16 \\ 0.17-0.32 \\ 0.33-0.64 \\ >0.64 \end{gathered}$	$\begin{aligned} & 0.008 \\ & -0.10 \\ & 0.008 \\ & -0.004 \\ & -0.008 \end{aligned}$	
					Melanoma Women	$\begin{gathered} 0.05-0.08 \\ 0.09-0.16 \\ 0.17-0.32 \\ 0.33-0.64 \\ >0.64 \end{gathered}$	$\begin{gathered} 0.000 \\ -0.001 \\ 0.002 \\ -0.009 \\ -0.003 \end{gathered}$	
Tsai, 1999 SKI14389 Taiwan	Taiwan 1971-1994, four townships Area endemic for Blackfoot disease	$\begin{gathered} 66 \text { men } 68 \\ \text { women } \end{gathered}$			Mortality, skin cancer, women	Standard: Local National Local National	$\begin{gathered} \text { SMR (95\% CI) } \\ 4.8(3.7-6.2) \\ 5.97(4.6-7.6) \\ 5.7(4.4-7.2) \\ 6.8(5.3-8.6) \end{gathered}$	Age, sex
Hopenhayn- Rich, 1998 SKIO2070 Argentina	Cordoba province	$\begin{gathered} 56 \text { men, } 35 \\ \text { women } \end{gathered}$		Arsenic in drinking water (surveys)	Mortality skin cancer Men	Low Medium High	SMR $2.04(1.38-2.89)$ $1.49(0.83-2.45)$ $1.49(0.71-2.73)$	Reference: All Argentinian population Mean in high exposure group: $178 \mathrm{mcg} / \mathrm{L}$
					Mortality skin cancer Women	$\begin{gathered} \text { Low } \\ \text { Medium } \\ \sim 178 \mathrm{mcg} / \mathrm{L} \end{gathered}$	$\begin{aligned} & 0.85(0.42-1.51) \\ & 0.82(0.32-1.68) \\ & 2.78 \text { (1.61-4.44) } \end{aligned}$	

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{aligned} & \text { RR }(95 \% \text { CI) } \\ & \text { Ptrend } \end{aligned}$	Adjustment factors
Smith, 1998 SKI02164 Chile	Northern Chile Mortality 1989-93, age ≥ 30	20 men 7 women		Annual average arsenic concentrations	Mortality skin cancer	$\begin{aligned} & \text { Ranging 43- } \\ & 569 \mu \mathrm{~g} / \mathrm{L} \text { in } \\ & 1950-94 \end{aligned}$	SMR Men 7.7 (4.7-11.9) Women 3.2(1.3-6.6)	Age-standardized to the national rates of Chile in 1991
Guo, 1998 Taiwan	243 townships, 11.4 million residents	$\begin{aligned} & 952 \text { men } \\ & 595 \text { women } \end{aligned}$		Arsenic concentration in wells	Incidence skin cancer 1980-87	Risk difference per 1% increase in arsenic concentration $\begin{aligned} & >640 \text { vs. } 50 \\ & \mu \mathrm{~g} / \mathrm{L} \end{aligned}$	Risk difference 0.34/100 000 ($p<0.01$) RR 14.21 in men 19.25 in women	Rates standardized using the 1976 world standard population. Model assumes that same number of individuals use each well.
$\begin{aligned} & \text { Wong, } 1992 \\ & \text { USA } \end{aligned}$	Four counties in Montana	Around 2300 in the 4 counties		Two contaminated counties (copper smelter and copper mines); two control counties	Incidence skin cancer 1980-86		Age-adjusted skin cancer incidence higher in control counties	
Chen and Wang 1990 Taiwan	314 precincts and townships				Mortality rate of skin cancer per 100000 1972-83	Increase in mortality rate per $0.1 \mu \mathrm{~g} / \mathrm{L}$ increase: Men 0.9 (SE 0.2); Women 1.0 (SE 0.2)		Multiple regression adjusted for age and indices of urbanization and industrialization. Mortality rates standardized to the 1976 world standard population
Wu 1989 SKI03805 Taiwan	42 villages in region endemic for Blackfoot disease	$19 \text { men } 17$ women	Death certificates	Median arsenic concentrations of wellwater in village of residence in 1964-66	Mortality skin cancer 1973-86	$\begin{gathered} \mathrm{ppm} \\ <30 \\ 30-59 \\ >=60 \end{gathered}$	$\begin{gathered} \hline \text { SMR (Men) } \\ 2.03 \\ 14.01 \\ 32.41(p<0.001) \\ \text { Women } \end{gathered}$	Age-standardized to the 1976 world standard population

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{aligned} & \text { RR (} \mathbf{~} 95 \% \text { CI) } \\ & \text { Ptrend } \end{aligned}$	Adjustment factors
						$\begin{gathered} <30 \\ 30-59 \\ >=60 \end{gathered}$	$\begin{gathered} 1.73 \\ 14.75 \\ 18.66(p<0.001) \end{gathered}$	
Chen, 1988 Taiwan	Region endemic for Blackfoot disease (SW)			Arsenic concentrations of well-water	Mortality skin cancer 1973-86	$\begin{aligned} & \text { Median }(\mu \mathrm{g} / \mathrm{L}) \\ & \text { Men } \\ & <300 \\ & 300-600 \\ & >600 \\ & \text { Women } \\ & <300 \\ & 300-600 \\ & >600 \end{aligned}$	$\begin{aligned} & \text { SMR (per } 100000 \text {)_1.6 } \\ & 10.7 \\ & 28.0 \\ & \\ & 1.6 \\ & 10.0 \\ & 15.1 \end{aligned}$	Age
Chen, 1985 SKI04411 Taiwan	Areas hyperendemic (21 villages), endemic (25 villages) and not endemic (38 villages) for Blackfoot disease	$46 \text { men } 49$ women		Areas with high, medium and low exposure to arsenic in Blackfoot disease areas compared to Taiwan population	Mortality skin cancer 1968-82		SMR Men $534(379-689)$ Women $652(469-835)$	Mortality rates in all Taiwan as standard
Cebrian, 1983 Mexico	Two rural populations in Lagunera region; 2486 residents	4 cases in area of high exposure; 0 case in area of low exposure	Epidermoid or basalcell carcinomas detected on physical exam of every 3rd household		Prevalence (time frame not specified)	Prevalence	High exposure arsenic ($410 \mu \mathrm{~g} / \mathrm{L}$): 1.4% Low exposure ($5 \mu \mathrm{~g} / \mathrm{L}$): 0\%	
Morton, 1976, SKI05213 USA	Oregon county, an area known to contain an arsenic-rich layer	$\text { ~165 } 000$ people		Water samples collected in 19581971 Range arsenic 0-2150 ppb	Incidence rates of NMSC 1958-1971	Correlation IR and level of arsenic	SCC Men 0.15 Women - 0.02 BCC Men -0.64	Age

Author, Year, WCRF Code, Country	Study name, characteristics	Cases/ Study size	Case ascertainment	Exposure assessment	Outcome	Comparison	$\begin{aligned} & \text { RR }(95 \% \text { CI) } \\ & \text { Ptrend } \end{aligned}$	Adjustment factors
							Women 0.10	
Zaldivar, 1974 Chile	City of Antofagasta			Concentration of arsenic fell from 580 $\mu \mathrm{g} / \mathrm{L}$ in 1968-69 to 8 $\mu \mathrm{g} / \mathrm{L}$ in 1971	Incidence of cutaneous lesions of chronic arsenic poisoning, 1968-71	Incidence rates, skin cancer before and after arsenic fell	Incidence rates per 100 000 Men: 145.5in 1968-69, 9.1in 1971 Women: 168.0 in 1968- 69; 10 in 1971	
Berg and Burbank, 1972 USA				Trace metals in water supplies from 10 basins throughout the USA; concentration of arsenic in water, Oct. 1962-Sept. 1967	Mortality skin cancer 1950-67		No correlation of mortality rate with arsenic concentration in water	
Tseng, 1968 SKI22098 Taiwan	40421 residents from 37 villages (South west) ≥ 20 years of age	428 cases	Prevalence based on clinical examination of all households	Arsenic concentrations of wells in village of residence (range, 1$1820 \mu \mathrm{~g} / \mathrm{L}$; most wells contained $400-600 \mu \mathrm{~g} / \mathrm{L}$ arsenic)	Prevalence skin cancer	Median ($\mu \mathrm{g} / \mathrm{L}$) $\begin{aligned} & <300 \\ & 300-600 \\ & >600 \end{aligned}$	Prevalence (per 1000) 2.6 10.1 21.4	
Rivara, 1967 Chile	Two regions, Antofagasta			Antofagasta arsenic concentration in drinking water in 19501992 40-860 $\mu \mathrm{g} / \mathrm{L}$.	Mortality 1976-92	Antofagasta vs. region with no arsenic contamination	$\begin{aligned} & \text { SMR (95\% CI) } \\ & 3.2(2.1-4.8) \end{aligned}$	Age

References of studies tabulated in Appendix 4

1. Bardach AE, Ciapponi A, Soto N, Chaparro MR, Calderon M, Briatore Aet al. Epidemiology of chronic disease related to arsenic in Argentina: A systematic review. Sci Total Environ 2015;538:802-16.
2. Berg JW, Burbank F. Correlations between carcinogenic trace metals in water supplies and cancer mortality. Ann N Y Acad Sci 1972;199:249-64.
3. Cebrian ME, Albores A, Aguilar M, Blakely E. Chronic arsenic poisoning in the north of Mexico. Hum Toxicol 1983;2(1):121-33.
4. Chen CJ, Chuang YC, Lin TM, Wu HY. Malignant neoplasms among residents of a blackfoot disease-endemic area in Taiwan: high-arsenic artesian well water and cancers. Cancer Res 1985;45(11 Pt 2):5895-9.
5. Chen CJ, Wu MM, Lee SS, Wang JD, Cheng SH, Wu HY. Atherogenicity and carcinogenicity of high-arsenic artesian well water. Multiple risk factors and related malignant neoplasms of blackfoot disease. Arteriosclerosis 1988;8(5):452-60.
6. Chen CJ, Wang CJ. Ecological correlation between arsenic level in well water and ageadjusted mortality from malignant neoplasms. Cancer Res 1990;50(17):5470-4.
7. Chen YC, Guo YL, Su HJ, Hsueh YM, Smith TJ, Ryan LMet al. Arsenic methylation and skin cancer risk in southwestern Taiwan. J Occup Environ Med 2003;45(3):241-8.
8. Cheng PS, Weng SF, Chiang CH, Lai FJ. Relationship between arsenic-containing drinking water and skin cancers in the arseniasis endemic areas in Taiwan. J Dermatol 2016;43(2):181-6.
9. Gilbert-Diamond D, Li Z, Perry AE, Spencer SK, Gandolfi AJ, Karagas MR. A population-based case-control study of urinary arsenic species and squamous cell carcinoma in New Hampshire, USA. Environ Health Perspect 2013;121(10):1154-60.
10. Guo HR, Lipsitz SR, Hu H, Monson RR. Using ecological data to estimate a regression model for individual data: the association between arsenic in drinking water and incidence of skin cancer. Environ Res 1998;79(2):82-93.
11. Guo HR, Yu HS, Hu H, Monson RR. Arsenic in drinking water and skin cancers: celltype specificity (Taiwan, ROC). Cancer Causes Control 2001;12(10):909-16.
12. Hopenhayn-Rich C, Biggs ML, Smith AH. Lung and kidney cancer mortality associated with arsenic in drinking water in Cordoba, Argentina. Int J Epidemiol 1998;27(4):561-9.
13. Hsueh YM, Cheng GS, Wu MM, Yu HS, Kuo TL, Chen CJ. Multiple risk factors associated with arsenic-induced skin cancer: effects of chronic liver disease and malnutritional status. Br J Cancer 1995;71(1):109-14.
14. Karagas MR, Stukel TA, Morris JS, Tosteson TD, Weiss JE, Spencer SKet al. Skin cancer risk in relation to toenail arsenic concentrations in a US population-based case-control study. Am J Epidemiol 2001;153(6):559-65.
15. Knobeloch LM, Zierold KM, Anderson HA. Association of arsenic-contaminated drinking-water with prevalence of skin cancer in Wisconsin's Fox River Valley. J Health Popul Nutr 2006;24(2):206-13.
16. Leonardi G, Vahter M, Clemens F, Goessler W, Gurzau E, Hemminki Ket al. Inorganic arsenic and basal cell carcinoma in areas of Hungary, Romania, and Slovakia: a casecontrol study. Environ Health Perspect 2012;120(5):721-6.
17. Morton W, Starr G, Pohl D, Stoner J, Wagner S, Weswig D. Skin cancer and water arsenic in Lane County, Oregon. Cancer 1976;37(5):2523-32.
18. Navoni JA, De PD, Garcia S, Villaamil Lepori EC. [Health risk for the vulnerable population exposed to arsenic in the province of Buenos Aires, Argentina]. Rev Panam Salud Publica 2012;31(1):1-8.
19. Rivara MI, Cebrian M, Corey G, Hernandez M, Romieu I. Cancer risk in an arseniccontaminated area of Chile. Toxicol Ind Health 1997;13(2-3):321-38.
20. Rosales-Castillo JA, Acosta-Saavedra LC, Torres R, Ochoa-Fierro J, Borja-Aburto VH, Lopez-Carrillo Let al. Arsenic exposure and human papillomavirus response in nonmelanoma skin cancer Mexican patients: a pilot study. Int Arch Occup Environ Health 2004;77(6):418-23.
21. Smith AH, Goycolea M, Haque R, Biggs ML. Marked increase in bladder and lung cancer mortality in a region of Northern Chile due to arsenic in drinking water. Am J Epidemiol 1998;147(7):660-9.
22. Tsai SM, Wang TN, Ko YC. Mortality for certain diseases in areas with high levels of arsenic in drinking water. Arch Environ Health 1999;54(3):186-93.
23. Tseng WP, Chu HM, How SW, Fong JM, Lin CS, Yeh S. Prevalence of skin cancer in an endemic area of chronic arsenicism in Taiwan. J Natl Cancer Inst 1968;40(3):45363.
24. Wheeler BW, Kothencz G, Pollard AS. Geography of non-melanoma skin cancer and ecological associations with environmental risk factors in England. Br J Cancer 2013;109(1):235-41.
25. Wong O, Whorton MD, Foliart DE, Lowengart R. An ecologic study of skin cancer and environmental arsenic exposure. Int Arch Occup Environ Health 1992;64(4):235-41.
26. Wu MM, Kuo TL, Hwang YH, Chen CJ. Dose-response relation between arsenic concentration in well water and mortality from cancers and vascular diseases. Am J Epidemiol 1989;130(6):1123-32.
27. Zaldivar R. Arsenic contamination of drinking water and foodstuffs causing endemic chronic poisoning. Beitr Pathol 1974;151(4):384-400.

[^0]: *All studies were included in the CUP dose-response meta-analysis

[^1]: *Dose-response meta-analysis was not conducted in the 2005 SLR.

