Introduction.

The World Cancer Research Fund/ American Institute for Cancer Research: (WCRF/AICR) has been a global leader in elucidating the relationship between food, nutrition, physical activity and cancer. The first and second expert reports\(^1\),\(^2\) represent the most extensive analyses of the existing science on the subject to date.

To keep the evidence current and updated into the future, WCRF/AICR is undertaking the Continuous Update Project (CUP) in collaboration with Imperial College London (ICL).

The WCRF/AICR second expert report was informed by a process of systematic literature reviews (SLRs) all of the evidence published. The CUP follows a similar scientific process to ensure a consistent approach to reviewing the evidence. A key step of the CUP is to update the central database with evidence published since the Second Expert Report.

The CUP concentrates on evidence that uses the best study designs, the cohort studies and randomised controlled trials, the two study designs on top of the hierarchy of evidence\(^3\).

WCRF/AICR has convened a panel of experts (the CUP Panel) consisting of leading scientists in the field of diet, physical activity, obesity and cancer who will consider the evidence produced by the systematic literature review and meta-analysis, and will consider the results and draw conclusions before making recommendations. The CUP will provide an impartial analysis and interpretation of the data as a basis for reviewing and where necessary revising the 2007 WCRF/AICR’s cancer prevention recommendations (Figure 1).

The continuous update of the epidemiological evidence on food, nutrition, physical activity and the risk of liver cancer will be conducted by a team of researchers at ICL in liaison with the SLR centres where possible. The peer-reviewed protocol will represent the agreed plan for the continuous update. Should departure from the agreed plan be considered necessary at a later stage, this must be agreed by the CUP Expert Panel and the reasons documented.
Liver cancer.

The most frequent type of liver cancer is hepatocellular carcinoma (HCC), constituting about 85-90% of all primary liver tumours worldwide\(^5\). Cholangiocarcinoma constitutes about 10-20% of the malignant liver tumors. Hepatoblastoma and angiosarcoma are less common type of liver cancer\(^5\).

Cancer of the liver is the fifth most common cancer site in men (age-standardised incidence rate per 100,000 = 16.0) and the eighth most common cancer site in women (age-standardised incidence rate per 100,000=6.0)\(^6\). The lethality of liver cancer is very high and incidence rates are very close to the mortality rates. Primary human liver cancer is a major cause of cancer death worldwide, accounting for almost 600,000 deaths per year (Figure 2).

The incidence of liver cancer tends to rise with age, peaking between age 60 years and 75 years \(^4\). It is about two to four times more common in men than in women \(^4-5\).

There is a considerable geographic variation in incidence. Incidence rates are higher in eastern Asia and sub-Saharan Africa (Figure 3) and lower in Americas and north European countries. The countries with the highest incidence of liver cancer for both sexes are Mongolia, Gambia and China Taipei\(^5-6\). The high rates are related to high rates of hepatitis infection (B and C viruses) a known risk factor of liver cancer \(^6\).
Figure 2. Estimated age (world)-standardised incidence and mortality rate of cancer per 100,000. World, 2008.
Risk factors

Epidemiologic studies have firmly documented that HCC is associated with liver cirrhosis. Chronic infection with hepatitis B virus (HBV) and hepatitis C virus (HCV) are also strongly linked to hepatocellular carcinoma. Both HBV and HCV have been declared to be human liver carcinogens. The proportion of HCC attributable to virally induced chronic hepatitis is estimated to be close to 85% in most populations.

Dietary aflatoxin is a known risk factor for hepatocellular carcinoma, but the mechanisms of carcinogenicity of this agent, both individually and in conjunction with viral infection are not well understood. Alcohol intake, mostly by causing cirrhosis, is also an established liver carcinogen; heavy, but not moderate, alcohol consumption has been strongly associated with the risk of the disease. Tobacco smoking is strongly related to HCC. There is compelling evidence that obesity and diabetes mellitus are related to increased risk of HCC. Coffee drinking has been reported to reduce the risk of the disease.

Judgement of the Second Export Report on liver cancer

In the judgement of the Panel of the WCRF-AICR second expert report on liver cancer, there was convincing evidence that high exposure to dietary aflatoxin increases the risk of liver cancer. Also, there was evidence that high alcohol consumption probably increases the risk. The evidence that high body fatness increases the risk of liver cancer and high intake of fruits might be protective was
judged suggestive but limited. The evidence on all other dietary and nutritional factors examined, and physical activity was inconclusive (Figure 4).

Figure 4. Summary of judgements of the 2007 Second Expert Report on liver cancer²

1. Research question

The research topic is:

The associations between food, nutrition and physical activity and the risk of liver cancer.
The main objective is:

To summarize the evidence from prospective studies and randomised controlled trials on the association between foods, nutrients, vitamin, minerals, physical activity, overweight and obesity with the risk of liver cancer in men and women.

2. Review team

<table>
<thead>
<tr>
<th>Name</th>
<th>Current position at IC</th>
<th>Role within team</th>
</tr>
</thead>
<tbody>
<tr>
<td>Teresa Norat</td>
<td>Principal Research Fellow</td>
<td>Principal investigator</td>
</tr>
<tr>
<td>Doris Chan</td>
<td>Research Assistant</td>
<td>Supervisor of data extraction. Data analyst, report preparation</td>
</tr>
<tr>
<td>Ana Rita Vieira</td>
<td>Research Assistant</td>
<td>Nutritional epidemiologist, data analyst, report preparation</td>
</tr>
<tr>
<td>Leila Abar</td>
<td>Research Assistant</td>
<td>Nutritionist, systematic search, article selection, data extraction</td>
</tr>
<tr>
<td>Snieguole Vingeliene</td>
<td>Research Assistant</td>
<td>Nutritionist, systematic search, article selection, data extraction</td>
</tr>
<tr>
<td>Rui Vieira</td>
<td>Data manager</td>
<td>Data management</td>
</tr>
</tbody>
</table>

Review coordinator, WCRF: Rachel Thomson
Statistical advisor: Darren Greenwood, senior Research Lecturer, University of Leeds

3. Timeline

The SLR’s for the Second Expert Report ended in December 30th 2005. All the data from published cohort studies and randomised controlled trials published up to this date was extracted by the SLR centre for the Second Expert Report. The continuous update will search and extract data of the articles from prospective studies and randomised controlled trials published from January 1st 2006 that are relevant to the review. The reviewers will verify that there are not duplicities in the database using a module for article search that has been implemented in the interface for data entry.

List of tasks and deadlines for the continuous update on liver cancer:

<table>
<thead>
<tr>
<th>Task</th>
<th>Deadline</th>
</tr>
</thead>
<tbody>
<tr>
<td>Start Medline search of relevant articles published from January 2006</td>
<td>1st October, 2012</td>
</tr>
<tr>
<td>Review abstracts and citations identified in initial electronic search. Select papers for complete review</td>
<td>Monthly</td>
</tr>
<tr>
<td>Review relevant papers. Select papers for data extraction</td>
<td>Monthly</td>
</tr>
<tr>
<td>Data extraction</td>
<td>Monthly</td>
</tr>
<tr>
<td>Hand search of references</td>
<td>July 1st, 2013</td>
</tr>
</tbody>
</table>
Start quantitative analysis* August 1st 2013
Start report writing October 30th 2013
Send report to WCRF-AICR November 30th 2013
Transfer Endnote files to WCRF November 30th 2013

*For the report to WCRF-AICR, search will end in July 30th 2013

4. Search strategy

4.1. Search database
The search aims to identify all types of evidence relevant to the research question.
The Medline database (includes coverage from 70 countries) will be searched using PubMed as platform. The rationale is that the results of the SLR’s for the Second Expert Report indicated that searching in databases other than Medline was not cost effective.

4.2. Hand searching for cited references
The review team will also hand search the references of reviews and meta-analyses identified during the search, as well as the references of the articles relevant to the review published in the last year before the preparation of the CUP report. Additionally, we will search Central and ClinicalTrials.gov for evidence of recent trials relevant to this review.

4.3 Search strategy for PubMed
The CUP review team will use the search strategy established in the SLR Guidelines for the WCRF-AICR Second Expert Report. The full search strategy for each cancer site is in Annex 1.
The search will be conducted in three steps:

1) Searching for studies relating to food, nutrition and physical activity (search strategy #1 to #22, Appendix 1)

2) Searching for all studies relating to liver cancer:

#23 liver neoplasms [MeSH]
#26 #23 OR (#24 AND #25)

3) Searching for studies relating to food, nutrition and physical activity, and liver cancer
#27 #22 AND #26
(search strategy #22 is in Appendix 1)
5. Study selection criteria

5.1 Inclusion criteria

The articles to be included in the review:

- Have to present results on an exposure/intervention relevant to the review (list of headings and subheadings of exposures in Annex 2).
- Must have as outcome of interest incidence or mortality of liver cancer (histological type not specified) or hepatocellular carcinoma.
- Have to present results from an epidemiologic study in men and/or women of one of the following types†:
 - Randomized controlled trial
 - Group randomized controlled trial (Community trial)
 - Prospective cohort study
 - Nested case-control study
 - Case-cohort study
 - Historical cohort study
- Any publication date. The CUP team only have to search and extract data from articles included in Medline from January 1st 2006, closure date of the database for the Second Expert Report17. All other articles are already in the database. were extracted

† Pooled analysis of cohort studies will be identified in the search, but their results will not be included in the meta-analyses. They will be used for narrative reviews and as support in the interpretation of the data. The rationale is that the inclusion of a pooled result of a cohort study as a single study in a meta-analysis may decrease the heterogeneity, if included as a single study. However, if study-specific results are shown in the manuscript of a pooled analysis of cohort studies, the cohort-specific results will be extracted and included in the meta-analyses in the CUP. Special care will be taken to avoid study duplicities. Additionally sensitivity analyses will be further conducted to test the effect of the inclusion of the results of pooling projects in the overall estimate. Filters for study design will not be implemented in the search strategy.

5.2 Exclusion criteria

- Cohort studies in which the only measure of the relationship between the relevant exposure and outcome is the mean difference of exposure (this is because the difference is not adjusted for main confounders).

6. Article selection
All references obtained with the search in PubMed will be archived in Reference Manager Databases.

The variables in the Reference manager files will be those generated using the filter Medline for importing data. Additionally, customized fields will be implemented (see Section 6.1).

The article selection will follow three steps:

1. An electronic search will be undertaken within Reference Manager to facilitate the identification of irrelevant records. This will be achieved by applying a list of terms developed and tested during the preparation of the WCRF-AICR Second Expert Report. The list was compiled from terms that describe surgical, diagnostic or oncology procedures, animal and in vitro studies. The titles and abstracts of the articles identified by this search will be the first assessed for inclusion/exclusion.

 Stop Words for use within Reference Manager Database

 Resection
 Chemoembolization
 Chemotherapy
 MRI (magnetic resonance imaging)
 PET (positron emission tomography)
 CT (computer tomography)
 Sorafenib
 Cell
 Inhibitor
 Novel
 Model
 Receptor
 Antibody
 Transgenic
 Mice
 Hamster
 Rat
 Dog
 Cat
 In vitro

2. In a second step the titles and abstracts of the remaining articles will be assessed by two reviewers using the inclusion criteria. The relevance of articles in language other than English will be assessed by inspection of the title and if available in English, the abstract. If the same study is published in English and in another language, only the article in English will be kept.

3. Full papers of all studies that are not clearly ineligible will then be obtained and the two reviewers will assess all obtained papers.

4. Disagreements between the reviewers will be resolved by discussion with the principal investigator.
5. If a retrieved paper reports outcomes for more than one cancer site, the principal investigator will be informed and will in turn inform the reviewers of these other cancers.

6.1 Reference Manager Files

Five customized fields will be created in the reference manager database. They will be used to indicate if the study was selected upon reading of title, abstract, or entire article; the study design of included articles; the status of data extraction of the included article; the WCRF code assigned and for excluded articles, the reason for exclusion (Table 1)

Table 1. User-defined fields to be created in Reference Manager during article selection and data extraction.

<table>
<thead>
<tr>
<th>Field</th>
<th>Use</th>
<th>Terms used</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>User Def 1</td>
<td>Included/excluded</td>
<td>Included; excluded; excludedabti</td>
<td>Excludedabti means excluded basing on abstract and title of the article. Without “abti” means full text is reviewed.</td>
</tr>
<tr>
<td>User Def 2</td>
<td>If excluded, reasons</td>
<td>No associations of interest; No original data/duplicates; Commentary; Foreign article in [language]; Not adequate study design Pooled studies/meta-analyses</td>
<td>No associations of interest include situations such as “out of the research topic”, “no measure of relationship”, “no specific outcome”</td>
</tr>
<tr>
<td>User Def 3</td>
<td>Study design</td>
<td>Randomized controlled trial (RCT) Prospective cohort study Retrospective cohort study Nested case-control study Case cohort study Population-based case-control study Hospital-based case-control study Case-control study (unclear or other type of control group)</td>
<td>The CUP only extract data from RCT, cohort/cohort based studies, but case-control studies are marked.</td>
</tr>
<tr>
<td>User Def 4</td>
<td>WCRF code after extracted</td>
<td>This is done when doing the data extraction</td>
<td>WCRF codes are assigned automatically in the application when</td>
</tr>
</tbody>
</table>
The Reference Management files will be converted to EndNote and sent to the WCRF Secretariat on November 30th, 2013.

7. Data extraction

The IC team will update the WCRF-AICR central database using the interface created at Imperial College for this purpose (Figure 5). Data extracted will include study design, characteristics of study population, mean age, distribution by sex, country, recruitment year, methods of exposure assessment, definition of exposure, definition of outcome, method of outcome assessment, study size, length of follow-up, lost to follow-up, analytical methods, adjustment variables, matching variables, whether methods for correction of measurement error were used. Measures of association, number of cases and number of comparison individuals or person years for each category of exposure will be extracted for each model used in the analyses. Ranges, means or median values for each level of the exposure categories will be extracted as reported in the paper.

Stratified and subgroup analyses, and results of interaction analyses will also be extracted.

The reviewers have been trained on the procedures for documenting the search and the use of the application for data extraction.

Figure 5. Example of screen for data entry, CUP

7.1 Allocation of study design
The study design algorithm devised for use of the SLR centres for the Second Expert Report will be used to allocate study designs to papers. In some cases it will be appropriate to assign more than one design to a particular paper (e.g. analyses in the entire cohort and nested case-control). The algorithm is in Figure 6.

Figure 6. Study design algorithm (From: SLR specification manual)

```
Key to study design algorithm
Study design A Case-study / case series
Study design B Cross-sectional study
Study design C Randomised controlled trial
Study design D Group randomised control trial
Study design E Uncontrolled trial
Study design F Ecologic study
Study design G Case-control study
Study design H Non-randomised control trial
Study design J Prospective cohort study
Study design K Nested case-control study
Study design L Historical cohort study
Study design M Case-cohort study
Study design N Time series with multiple measurements
Other (see definitions in Appendix K)
Study design P Case only study with prospective exposure measurement
Study design Q Case only study with retrospective exposure measurement
```
7.2 Study identifier

The CUP team will use the same labelling of articles used in the SLR process for the Second Expert Report\(^1\): the unique identifier for an article will be constructed using a 3-letter code to represent the cancer site: BLA (liver cancer), followed by a 5-digit number that will be allocated in sequence.

7.3 Codification of exposures

The headings of the main exposure groups are:

1. Patterns of diet, includes regionally defined diets, socio-economically defined diets, culturally defined diets, individual level dietary patterns, other dietary patterns, breastfeeding and other issues
2. Foods, including starchy foods; fruit and (non-starchy) vegetables; pulses (legumes); nuts and seeds; meat, poultry, fish and eggs; fats, oils and sugars; milk and dairy products; and herbs, spices, and condiments, and composite foods.
3. Beverages, including total fluid intake, water, milk, soft drinks, fruit juices, hot drinks and alcoholic drinks.
4. Food production including traditional methods and chemical contaminants, food preservation, processing and preparation.
5. Dietary constituents, including carbohydrate, lipids, protein, alcohol, vitamins, minerals, phytochemicals, nutrient supplements and other bioactive compounds
6. Physical activity, including total physical activity, physical inactivity and surrogate markers for physical activity.
7. Energy balance, including energy intake, energy density and energy expenditure.
8. Anthropometry, including markers of body composition, markers of body fat distribution, height and other skeletal measures, and growth in fetal life, infancy or childhood.

The CUP will use the exposure headings and subheadings and codes listed in the SLR Guidelines for the Second Expert Report (Annex 2). Additional codes for sub-exposures were added during the SLRs for the Second Expert Report and during the CUP at Imperial College. The exposures listed in Annex 2 represent the minimum list of exposures to be examined. These exposures are programmed in the interface for data entry generated at Imperial College with the purpose of facilitating data entry.

7.3.1 Codification of biomarkers of exposure

Biomarkers of exposure will be included under the heading and with the code of the corresponding exposure.

During the SLR for the Second Expert Report, some review centres opted for including in the review only biomarkers for which there was strong evidence on reliability or validity whereas other centres opted for including results on all the biomarkers retrieved in the search, independently of their validity. For the evaluation of the evidence, the Panel of Experts took in consideration the validity of the reported biomarkers. The full list of biomarkers for which the evidence on validity and reliability was considered strong for the purpose of the Second Expert Report and the rationale is in Annex 3.
The CUP will conduct meta-analysis for the biomarkers for which the evidence on validity and reliability was considered strong for the purpose of the Second Expert Report (full list in Annex 3). However, since the identification and validation of biomarkers is an area of research in nutritional epidemiology, the CUP team will follow the approach of extracting the data for all biomarkers reported in the included studies, independently of whether validity and reliability had been or not fully documented.

7. 4 Extraction and labelling of study results

The results on the association with each relevant exposure examined will be extracted by the reviewer. All the results on associations (RR estimates and confidence intervals) obtained using all the models reported in the paper and all the subgroup or stratified analyses will be extracted. These results can be presented in the papers in tables, in the text or as supplemental information to the papers.

The reviewer should label the results as unadjusted, intermediately adjusted, most adjusted model, depending of the model that had been used.

The results for an exposure obtained with univariate models will be labelled “unadjusted”.

The results for an exposure obtained with a multivariable model including only as covariates age, sex, and in dietary analyses energy intake, will be labelled “less adjusted”.

The results for an exposure obtained with the model including the higher number of covariables in the article will be labelled “most adjusted”.

The results obtained using any multivariable model that is not the less or the most adjusted model, will be labelled “intermediately” adjusted.

In addition, the reviewer will indicate the “best model” for use in meta-analyses.

The “best” model will be the most adjusted model in the article that is a not a “mechanistic” model, which is a model that include variables likely to be in the causal pathway (e.g. milk intake as main exposure in a model adjusted for dietary calcium). When such models are reported, the “intermediately” adjusted result with the highest number of covariates will be indicated as “best model”.

Sometimes, potential risk factors are not kept in the final model because their inclusion does not substantially modify the risk estimates. If this is specified in the article text, this model should also be considered the “best model”.

In addition to adjustment, other subsidiary criteria to consider for identifying the 'best model' for meta-analysis are the completeness of the data (e.g. where quantile ranges are provided over where missing).

8. Quality control

The data extracted will be checked by a second reviewer at ICL. The first double checking will be done by the second reviewer after the first ten articles have been extracted. If systematic errors are detected, these will be discussed with the PI and the reviewer will be trained again. Other errors will be discussed with the reviewer and corrected. The same process will be followed during the first year. If no errors or
only minor sporadic errors are detected, 10% random sample of the data extracted will be assessed by the second reviewer in the subsequent years. The purpose of implementing this procedure is to be more cost-effective.

9. Data analysis

9.1 Dose-response meta-analysis
The overall aim of data synthesis is to collate and summarise the results of the studies included in the CUP. Meta-analytic and narrative aspects of the data analysis complement each other.

Such as in the Second Expert Report, only dose-response meta-analysis will be conducted. This will allow expressing the results of each study in the same increment unit for a given exposure. Non-linear dose-response meta-analyses will be conducted as exploratory analysis.

The primary analyses will include the studies that explicitly report on HCC carcinoma and the studies that do not distinguish types of liver cancer. Studies with incidence as outcome will be analysed together with those with mortality as outcome.

Separate analyses by gender and for both gender combined will be conducted. For the analysis on both gender combined, the results for men and women from each study will be pooled first using fixed effect models and then included in the meta-analysis of “Both gender”. This is essentially equivalent to including the estimate for each gender but has the advantage of providing a better estimate of heterogeneity across studies.

Where results from two or more cohort studies are reported in the same paper, the results of each cohort will be included separately if they are provided and the pooled result will not be included. The purpose is to maintain the independence of observations included and to look at heterogeneity across study results.

Forest plots showing the study specific results for the highest versus lowest comparison exposure levels will be presented, but a meta-analytical estimate for the highest versus lowest comparison will not be calculated, to avoid pooling different exposure levels. In the forest plot, the studies will be ordered by publication year.

9.2 Selection of exposures for a dose-response meta-analysis
The meta-analysis will include studies identified during the SLR and studies identified during the CUP. A dose-response meta-analysis will be conducted when at least two new reports of trials or of two cohort studies are identified during the CUP. This refers to studies providing enough information to conduct dose-response meta-analysis. The minimum number of two studies was not derived statistically but it is a number that can be reasonable expected to have been published after the Second Expert Report.

The updates of studies included in the meta-analyses for the Second Expert Report will be considered “new results”. Special care will be taken to avoid including more than once the results of the same study. Where a particular study has published more than one paper on the same exposure, the analysis using the larger number of cases will be selected. This is often the most recent paper.
9.3 Selection of results data for meta-analyses

The results based on “best” adjusted models (full multivariable model in the articles) will be used in the dose-response meta-analyses.

When the relative risk estimate per unit of increase is reported in an article, this will be used in the CUP dose-response meta-analysis. If the results are presented in categorical variables (quantiles or pre-defined categories), the relative risk estimates and their standard errors (or confidence intervals) per exposure level will be extracted. These will be used to derive the slope of the “dose-response” relationship.

Other data required to derive the dose-response slopes in each study are:

1. number of individuals with the disease for each exposure category
2. person-years -or number of individuals without the disease in nested case-control analyses- for each exposure category
3. exact cut-offs of exposure categories, or mean or median of each category.

The information provided in the articles is often incomplete and this may result in exclusions of results from meta-analyses. For instance, only 64% of the results of cohort studies on liver and prostate cancer provided enough data to be included in dose-response meta-analysis in the SLR for the Second Expert Report. Moreover, results that showed evidence of an association were more likely to be usable in dose-response meta-analysis than results that found no such evidence.

Failure to include all available evidence will reduce precision of summary estimates and may also lead to bias if propensity to report results in sufficient detail is associated with the magnitude and/or direction of associations. To address incompleteness, missing data will be derived during the phase of statistical analyses. This will be done using other information provided in the paper as explained in section 9.4.

9.4 Derivation of data required for meta-analyses.

A number of approaches will be taken to derive the number of controls (or person-years) and mean exposure value for each exposure category from the available data where possible. When intake was expressed in “times” or “servings of intake”, we will convert it into grams (g) using standard portion sizes used in the WCRF/AICR report. Means or medians of the intake categories will be assigned as “dose” when reported in the articles; if not reported, midpoints will be assigned to the relative risk of the corresponding category. For lowest or highest open-ended categories we will use the amplitude of the nearest category. For studies reporting intakes in grams/1000 kcal/day, the intake in grams/day will be estimated using the average energy intake reported in the article. The approaches are summarized in Table 2.

9.5 Statistical Methods

For the linear dose-response meta-analyses, we will pool the relative risk estimates per unit of intake increase (with its standard error) reported in the studies. When only relative risk estimates for categorical data are reported in the paper, we will derive the
slope of the “dose”-response association from the categorical data using generalized least-squares for trend estimation20. The dose-response model is forcing the fitted line to go through the origin (logRR=0, dose=0). Therefore, whenever the assigned dose corresponding to the reference group (RR=1) is different from zero, all the assigned doses will be rescaled.

For each study, we will derive estimates of the log odds ratio per unit increase in exposure and their standard errors using the method of Greenland and Longnecker20. This method accounts for the correlation between relative risks estimates with respect to the same reference category. We will use the “best” (most adjusted risk estimate) from each study and if no model is considered the “best”, we will use the most adjusted model that is not mechanistic model. The study specific log odds ratios per unit increase in exposure will be combined in a random effect model using the method of DerSimonian and Laird21, with the estimate of heterogeneity being taken from the inverse-variance fixed-effect model.

Table 2. Approaches to derive missing information for meta-analyses in the CUP

<table>
<thead>
<tr>
<th>Type of data</th>
<th>Problem</th>
<th>Approach</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dose-response data</td>
<td>Serving size is not quantified or ranges are missing, but group descriptions are given</td>
<td>Use serving size recommended in SLR18</td>
</tr>
<tr>
<td></td>
<td>Standard error missing</td>
<td>The p value (either exact or the upper bound) is used to estimate the standard error</td>
</tr>
<tr>
<td>Quantile-based data</td>
<td>Numbers of controls (or the denominator in cohort studies) are missing</td>
<td>Group sizes are assumed to be approximately equal</td>
</tr>
<tr>
<td></td>
<td>Confidence interval is missing</td>
<td>Standard error and hence confidence interval were calculated from raw numbers (although doing so may result in a somewhat smaller standard error than would be obtained in an adjusted analysis)</td>
</tr>
<tr>
<td></td>
<td>Group mean are missing</td>
<td>This information may be estimated by using the method of Chêne and Thompson24 with a normal or lognormal distribution, as appropriate, or by taking midpoints (scaled in unbounded groups according to group numbers) if the number of groups is too small to calculate a distribution (3-4 groups)</td>
</tr>
<tr>
<td>Category data</td>
<td>Numbers of controls (or the denominator in cohort studies) is missing</td>
<td>These numbers may be inferred based on numbers of cases and the reported odds ratio (proportions will be correct unless adjustment for confounding factors considerably alter the crude odds ratios)</td>
</tr>
</tbody>
</table>

We will explore potential nonlinear dose–response relationships using fractional polynomial models22. The best-fitting second-order fractional polynomial regression model will be defined as the one with the lowest deviance. A likelihood ratio test will be used to test for nonlinearity23. Because there is the risk of false positive results and
the usually low number of studies, the non-linear association analyses will be considered mainly as exploratory.

The analyses will be conducted using STATA version 11.1 (College Station, TX, USA)20.

9.6 Analysis of heterogeneity and potential bias

Small study bias (e.g. publication bias) will be explored through visual examination of funnel plots and Egger's test25.

Heterogeneity between studies will be assessed visually from forest plots, with statistical tests (P value <0.05 will be considered statistically significant) and quantified with the I^2 statistic - where I^2 values of 25%, 50%, and 75% correspond to cut-off points for low, moderate, and high degrees of heterogeneity26.

Meta-regression and stratified analyses will be performed to investigate potential sources of heterogeneity even if the initial overall test for heterogeneity is non-significant as these tests often have low power. The variables that will be examined as sources of heterogeneity where possible include outcome definition, method of exposure assessment, gender, geographic area/country, level of adjustment, publication year, study size, length of follow-up. This will be done if there are at least two studies in each of the categories under the variables considered.

Other variables that may be considered as source of heterogeneity are characterisation of the exposure (FFQ, recall, diary, anthropometry etc.) and exposure range (including correction for measurement error, length of intervention).

The interpretation of the exploration of heterogeneity should be cautious. If a considerable number of study characteristics are considered as possible explanations for heterogeneity in a meta-analysis containing only a small number of studies, then there is a high probability that one or more will be found to explain heterogeneity, even in the absence of real associations between the study characteristics and the size of associations.

Where heterogeneity not explicable by chance is detected and substantial variability exists between studies, it will be considered whether it is appropriate to present a combined estimate for all studies.

9.7 Sensitivity analyses

The purpose of doing sensitivity analyses is to strengthen the confidence that can be placed in the results. If results do change in a way that might lead to different conclusions, this indicates a need for greater caution in interpreting the results.

Sensitivity analyses will be carried out to investigate how robust the overall findings of the CUP are relative to key decisions and assumptions that were made in the process of conducting the update.

Sensitivity analysis will be done as a minimum for:

- Including and excluding studies where there is some ambiguity as to whether they meet the inclusion criteria, for example it may be unclear what types of liver cancer are considered in a study.
• Including and excluding studies where exposure unit or other missing information was inferred by the authors (for example assigning a standard portion size when this is not provided).
• Influence-analyses where each individual study will be omitted in turn in order to investigate the sensitivity of the pooled estimates to inclusion or exclusion of particular studies.
• Including the results of pooling projects of cohort studies.
• Including study results that were not “best” adjusted models when the study was excluded.
• Stratified analyses according to whether antecedents of HVB or HVC were include as covariates in the models, and subgroup analyses of studies in individuals with previous HVB or HVC infection if enough studies are identified.

10. Reports

An updated report will be produced in 2013. The report will include the following elements:

10.1 Modifications of the approved protocol
 Any modification required during the review will be described.

10.2 Results of the search
 Information on number of records downloaded, number of papers thought potentially relevant after reading titles and abstracts and number of papers included. The reasons for excluding papers should also be described. This information will be summarised in a flowchart.

10.3 Description of studies identified in the continuous update
 Number of studies by study design and publication year.
 Number of studies by population characteristics (gender, geographic area, others)
 Number of studies by exposure (main heading and selected subheadings) and publication year
 Number of studies by exposure and outcome subtype

10.4 Summary of number of studies by exposure and study type in the database, separated on studies identified in the continuous update and studies identified during the CUP.

10.5 Tabulation of study characteristics

Information on the characteristics (e.g. population, exposure, outcome, study design) and results of the study (e.g. direction and magnitude) will be summarised in tables using the same format as for the SLR for the second expert report. The tables will be automatically generated using the central database. Within this table the studies will be ordered according to design (e.g. randomised controlled trials, cohort studies) and chronologically.

Example of table of study characteristics (in two parts below):
10.6 Graphic presentation

Tabular presentation will be complemented with graphic displays when the number of studies justifies it. Study results will be displayed in forest plots showing relative risk estimates and 95% confidence interval of “high versus low” comparisons for each study. Dose-response graphs will be given for individual studies for which the information is available. Funnel plots will be shown when there are at least five studies.

10.7 Results of meta-analysis

The results of meta-analysis will be presented in tables and forest plots. The tables will include a comparison with the results of the meta-analyses undertaken during the SLR for the Second Expert Report.

Main characteristics of included and excluded studies in dose-response meta-analysis will be tabulated, and reasons for exclusions will be detailed.

All forest plots in the report will have the same format. Footnotes will provide quantified information (statistical tests and I^2 statistics) on the degree of heterogeneity between the displayed studies.

The results of meta-regression, stratified analyses and sensitivity analysis will be presented in tables. When the number of studies justifies it, these results will be also presented in forest plots.

The tables will include the information required by the Panel to judge the quality of the studies included in the analyses (Newcastle–Ottawa quality assessment scale for cohort studies and the Cochrane Collaboration’s tool for assessing risk of bias). During the analyses, when the number of studies makes it possible, the IC team will
conduct sensitivity analyses using as criteria, those included in the scale and tool mentioned.

References

5. EL–Serag HB, Rudolph KL. Hepatocellular Carcinoma: Epidemiology and Molecular Carcinogenesis. Gastroenterology. 2007;132:2557–2576
Annex 1. WCRF - PUBMED SEARCH STRATEGY

a) Searching for all studies relating to food, nutrition and physical activity:

#1 diet therapy[MeSH Terms] OR nutrition[MeSH Terms]
#6 pesticides[MeSH Terms] OR fertilizers[MeSH Terms] OR "veterinary drugs"[MeSH Terms]
#8 food preservation[MeSH Terms]
#10 cookery[MeSH Terms]

#12 ((carbohydrates[MeSH Terms] OR proteins[MeSH Terms]) and (diet*[tiab] or food*[tiab])) OR sweetening agents[MeSH Terms]

#14 vitamins[MeSH Terms]

#16 physical fitness[MeSH Terms] OR exertion[MeSH Terms] OR physical endurance[MeSH Terms] or walking[MeSH Terms]

#20 #1 OR #2 OR #3 OR #4 OR #5 OR #6 OR #7 OR #8 OR #9 OR #10 OR #11 OR #12 OR #13 OR #14 OR #15 OR #16 OR #17 OR #18 OR #19

#21 animal[MeSH Terms] NOT human[MeSH Terms]

#22 #20 NOT #21

b) Searching for all studies relating to liver cancer:
#23 liver neoplasms [MeSH]
#24 malign*[tiab] OR neoplasm*[tiab] OR carcinoma*[tiab] OR cancer*[tiab]
 OR tumor*[tiab] OR tumour*[tiab] OR angiosarcoma*[tiab]
#25 liver*[tiab] OR hepatocellular*[tiab] OR cholangio*[tiab] OR
 hepatoblastoma*[tiab] OR hepatic*[tiab] OR hepatoma*[tiab] OR hepatocarcinoma*[tiab]
#26 #23 OR (#24 AND #25)

c) Searching for all studies relating liver cancer, and food, nutrition and physical
 activity:
#27 #22 AND #26
Annex 2. List of headings and exposure codes (minimum list)

*Indicated codes added during the CUP

1 Patterns of diet

1.1 Regionally defined diets

*1.1.1 Mediterranean diet

Include all regionally defined diets, evident in the literature. These are likely to include Mediterranean, Mesoamerican, oriental, including Japanese and Chinese, and “western type”.

1.2 Socio-economically defined diets

To include diets of low-income, middle-income and high-income countries (presented, when available in this order). Rich and poor populations within low-income, middle-income and high-income countries should also be considered. This section should also include the concept of poverty diets (monotonous diets consumed by impoverished populations in the economically-developing world mostly made up of one starchy staple, and may be lacking in micronutrients).

1.3 Culturally defined diets

To include dietary patterns such as vegetarianism, vegan diets, macrobiotic diets and diets of Seventh-day Adventists.

1.4 Individual level dietary patterns

To include work on factor and cluster analysis, and various scores and indexes (e.g. diet diversity indexes) that do not fit into the headings above.

1.5 Other dietary patterns

Include under this heading any other dietary patterns present in the literature, that are not regionally, socio-economically, culturally or individually defined.

1.6 Breastfeeding

1.6.1 Mother

Include here also age at first lactation, duration of breastfeeding, number of children breast-fed

1.6.2 Child

Results concerning the effects of breastfeeding on the development of cancer should be disaggregated into effects on the mother and effects on the child. Wherever
possible detailed information on duration of total and exclusive breastfeeding, and of complementary feeding should be included.

1.7 Other issues

For example results related to diet diversity, meal frequency, frequency of snacking, dessert-eating and breakfast-eating should be reported here. Eating out of home should be reported here.

2 Foods

*2.0.1 Plant foods

2.1 Starchy foods

2.1.1 Cereals (grains)

* 2.1.1.0.1 Rice, pasta, noodles
* 2.1.1.0.2 Bread
* 2.1.1.0.3 Cereal

* Report under this subheading the cereals when it is not specified if they are wholegrain or refined cereals (e.g. fortified cereals)

2.1.1.1 Wholegrain cereals and cereal products

* 2.1.1.1.1 Wholegrain rice, pasta, noodles
* 2.1.1.1.2 Wholegrain bread
* 2.1.1.1.3 Wholegrain cereal

2.1.1.2 Refined cereals and cereal products

* 2.1.1.2.1 Refined rice, pasta, noodles
* 2.1.1.2.2 Refined bread
* 2.1.1.2.3 Refined cereal

2.1.2 Starchy roots, tubers and plantains

* 2.1.2.1 Potatoes

2.1.3 Other starchy foods

*Report polenta under this heading

2.2 Fruit and (non-starchy) vegetables

Results for “fruit and vegetables” and “fruits, vegetables and fruit juices” should be reported here. If the definition of vegetables used here is different from that used in the first report, this should be highlighted.

2.2.1 Non-starchy vegetables
This heading should be used to report total non-starchy vegetables. If results about specific vegetables are reported they should be recorded under one of the subheadings below or if not covered, they should be recorded under ‘2.2.1.5 other’.

2.2.1.1 Non-starchy root vegetables and tubers

*2.2.1.1.1 Carrots

2.2.1.2 Cruciferous vegetables
2.2.1.3 Allium vegetables
2.2.1.4 Green leafy vegetables (not including cruciferous vegetables)
2.2.1.5 Other non-starchy vegetables

*2.2.1.5.13 Tomatoes

*2.2.1.5.1 Fresh beans (e.g. string beans, French beans) and peas

Other non-starchy vegetables’ should include foods that are botanically fruits but are eaten as vegetables, e.g. courgettes. In addition vegetables such as French beans that do not fit into the other categories, above.

If there is another sub-category of vegetables that does not easily fit into a category above eg salted root vegetables (ie you do not know if it is starchy or not) then report under 2.2.1.5. and note the precise definition used by the study. If in doubt, enter the exposure more than once in this way.

2.2.1.6 Raw vegetables

This section should include any vegetables specified as eaten raw. Results concerning specific groups and type of raw vegetable should be reported twice i.e. also under the relevant headings 2.2.1.1 –2.2.1.5.

2.2.2 Fruits

*2.2.2.0.1 Fruit, dried
*2.2.2.0.2 Fruit, canned
*2.2.2.0.3 Fruit, cooked

2.2.2.1 Citrus fruit

2.2.2.1.1 Oranges
2.2.2.1.2 Other citrus fruits (e.g. grapefruits)

2.2.2.2 Other fruits

*2.2.2.2.1 Bananas
*2.2.2.2.4 Melon
*2.2.2.2.5 Papaya
*2.2.2.2.7 Blueberries, strawberries and other berries
*2.2.2.2.8 Apples, pears
*2.2.2.2.10 Peaches, apricots, plums
*2.2.2.2.11 Grapes
If results are available that consider other groups of fruit or a particular fruit please report under ‘other’, specifying the grouping/fruit used in the literature.

2.3 Pulses (legumes)

*2.3.1 Soya, soya products

*2.3.1.1 Miso, soya paste soup
*2.3.1.2 Soya juice
*2.3.1.4 Soya milk
*2.3.1.5 Tofu

*2.3.2 Dried beans, chickpeas, lentiles

*2.3.4 Peanuts, peanut products

Where results are available for a specific pulse/legume, please report under a separate heading.

2.4 Nuts and Seeds

To include all tree nuts and seeds, but not peanuts (groundnuts). Where results are available for a specific nut/seed, e.g. brazil nuts, please report under a separate heading.

2.5 Meat, poultry, fish and eggs

Wherever possible please differentiate between farmed and wild meat, poultry and fish.

2.5.1 Meat

This heading refers only to red meat: essentially beef, lamb, pork from farmed domesticated animals either fresh or frozen, or dried without any other form of preservation. It does not refer to poultry or fish.

Where there are data for offal (organs and other non-flesh parts of meat) and also when there are data for wild and non-domesticated animals, please show these separately under this general heading as a subcategory.

2.5.1.1 Fresh Meat
2.5.1.2 Processed meat

*2.5.1.2.1 Ham
*2.5.1.2.1.7 Burgers
*2.5.1.2.8 Bacon
*2.5.1.2.9 Hot dogs
*2.5.1.2.10 Sausages
Repeat results concerning processed meat here and under the relevant section under 4. Food Production and Processing. Please record the definition of ‘processed meat’ used by each study.

2.5.1.3 Red meat

*2.5.1.3.1 Beef
*2.5.1.3.2 Lamb
*2.5.1.3.3 Pork
*2.5.1.3.6 Horse, rabbit, wild meat (game)

Where results are available for a particular type of meat, e.g. beef, pork or lamb, please report under a separate heading.

Show any data on wild meat (game) under this heading as a separate sub-category.

2.5.1.4 Poultry

Show any data on wild birds under this heading as a separate sub-category.

*2.5.1.5 Offals, offal products (organ meats)

2.5.2 Fish

*2.5.2.3 Fish, processed (dried, salted, smoked)
*2.5.2.5 Fatty Fish
*2.5.2.7 Dried Fish
*2.5.2.9 White fish, lean fish

2.5.3 Shellfish and other seafood

2.5.4 Eggs

2.6 Fats, oils and sugars

2.6.1 Animal fats

*2.6.1.1 Butter
*2.6.1.2 Lard
*2.6.1.3 Gravy
*2.6.1.4 Fish oil

2.6.2 Plant oils
2.6.3 Hydrogenated fats and oils

*2.6.3.1 Margarine

Results concerning hydrogenated fats and oils should be reported twice, here and under 4.3.2 Hydrogenation

2.6.4 Sugars
This heading refers to added (extrinsic) sugars and syrups as a food, that is refined sugars, such as table sugar, or sugar used in bakery products.

2.7 Milk and dairy products

Results concerning milk should be reported twice, here and under 3.3 Milk

*2.7.1 Milk, fresh milk, dried milk

*2.7.1.1 Whole milk, full-fat milks
*2.7.1.2 Semi skimmed milk, skimmed milk, low fat milk, 2% Milk

*2.7.2 Cheese

*2.7.2.1 Cottage cheese
*2.7.2.2 Cheese, low fat

*2.7.3 Yoghurt, buttermilk, sour milk, fermented milk drinks

*2.7.3.1 Fermented whole milk
*2.7.3.2 Fermented skimmed milk

*2.7.7 Ice cream

2.8 Herbs, spices, condiments

*2.8.1 Ginseng
*2.8.2 Chili pepper, green chili pepper, red chili pepper

2.9 Composite foods

Eg, snacks, crisps, desserts, pizza. Also report any mixed food exposures here ie if an exposure is reported as a combination of 2 or more foods that cross categories (eg bacon and eggs). Label each mixed food exposure.

*2.9.1 Cakes, biscuits and pastry
*2.9.2 Cookies
*2.9.3 Confectionery
*2.9.4 Soups
*2.9.5 Pizza
*2.9.6 Chocolate, candy bars
*2.9.7 Snacks

3 Beverages

3.1 Total fluid intake

3.2 Water

3.3 Milk
For results concerning milk please report twice, here and under 2.7 Milk and Dairy Products.

3.4 Soft drinks

Soft drinks that are both carbonated and sugary should be reported under this general heading. Drinks that contain artificial sweeteners should be reported separately and labelled as such.

3.4.1 Sugary (not carbonated)
3.4.2 Carbonated (not sugary)

The precise definition used by the studies should be highlighted, as definitions used for various soft drinks vary greatly.

3.5 Fruit and vegetable juices

3.5.1 Citrus fruit juice
3.5.2 Fruit juice
3.5.3 Vegetable juice
3.5.4 Tomato juice

3.6 Hot drinks

3.6.1 Coffee
3.6.2 Tea

Report herbal tea as a sub-category under tea.

3.6.2.1 Black tea
3.6.2.2 Green tea
3.6.3 Maté
3.6.4 Other hot drinks

3.7 Alcoholic drinks

3.7.1 Total

3.7.1.1 Beers
3.7.1.2 Wines
3.7.1.3 Spirits
3.7.1.4 Other alcoholic drinks

4 Food production, preservation, processing and preparation

4.1 Production

4.1.1 Traditional methods (to include ‘organic’)
4.1.2 Chemical contaminants
Only results based on human evidence should be reported here (see instructions for dealing with mechanistic studies). Please be comprehensive and cover the exposures listed below:

4.1.2.1 Pesticides
4.1.2.2 DDT
4.1.2.3 Herbicides
4.1.2.4 Fertilisers
4.1.2.5 Veterinary drugs
4.1.2.6 Other chemicals

4.1.2.6.1 Polychlorinated dibenzofurans (PCDFs)
4.1.2.6.2 Polychlorinated dibenzodioxins (PCDDs)
4.1.2.6.3 Polychlorinated biphenyls (PCBs)

4.1.2.7 Heavy metals

4.1.2.7.1 Cadmium
4.1.2.7.2 Arsenic

4.1.2.8 Waterborne residues

4.1.2.8.1 Chlorinated hydrocarbons

4.1.2.9 Other contaminants

Please also report any results that cover the cumulative effect of low doses of contaminants in this section.

4.2 Preservation

4.2.1 Drying

4.2.2 Storage

4.2.2.1 Mycotoxins
4.2.2.1.1 Aflatoxins
4.2.2.1.2 Others

4.2.3 Bottling, canning, vacuum packing
4.2.4 Refrigeration
4.2.5 Salt, salting

4.2.5.1 Salt
4.2.5.2 Salting
4.2.5.3 Salted foods

4.2.5.3.1 Salted animal food
4.2.5.3.2 Salted plant food

4.2.6 Pickling
4.2.7 Curing and smoking

4.2.7.1 Cured foods
4.2.7.1.1 Cured meats
4.2.7.1.2 Smoked foods

For some cancers e.g. colon, rectum, stomach and pancreas, it may be important to report results about specific cured foods, cured meats and smoked meats. N-nitrososamines should also be covered here.

4.3 Processing

4.3.1 Refining

Results concerning refined cereals and cereal products should be reported twice, here and under 2.1.1.2 refined cereals and cereal products.

4.3.2 Hydrogenation

Results concerning hydrogenated fats and oils should be reported twice, here and under 2.6.3 Hydrogenated fats and oils

4.3.3 Fermenting
4.3.4 Compositional manipulation

4.3.4.1 Fortification
4.3.4.2 Genetic modification
4.3.4.3 Other methods

4.3.5 Food additives

4.3.5.1 Flavours

Report results for monosodium glutamate as a separate category under 4.3.5.1 Flavours.

4.3.5.2 Sweeteners (non-caloric)
4.3.5.3 Colours
4.3.5.4 Preservatives

4.3.5.4.1 Nitrites and nitrates

4.3.5.5 Solvents
4.3.5.6 Fat substitutes
4.3.5.7 Other food additives

Please also report any results that cover the cumulative effect of low doses of additives.
Please also report any results that cover synthetic antioxidants

4.3.6 Packaging

4.3.6.1 Vinyl chloride
4.3.6.2 Phthalates
4.4 Preparation

4.4.1 Fresh food

4.4.1.1 Raw

Report results regarding all raw food other than fruit and vegetables here. There is a separate heading for raw fruit and vegetables (2.2.1.6).

4.4.1.2 Juiced

4.4.2 Cooked food

4.4.2.1 Steaming, boiling, poaching
4.4.2.2 Stewing, casseroling
4.4.2.3 Baking, roasting
4.4.2.4 Microwaving
4.4.2.5 Frying
4.4.2.6 Grilling (broiling) and barbecuing
4.4.2.7 Heating, re-heating

Some studies may have reported methods of cooking in terms of temperature or cooking medium, and also some studies may have indicated whether the food was cooked in a direct or indirect flame. When this information is available, it should be included in the SLR report.

Results linked to mechanisms e.g. heterocyclic amines, acrylamides and polycyclic aromatic hydrocarbons should also be reported here. There may also be some literature on burned food that should be reported in this section.

5 Dietary constituents

Food constituents’ relationship to outcome needs to be considered in relation to dose and form including use in fortified foods, food supplements, nutrient supplements and specially formulated foods. Where relevant and possible these should be disaggregated.

5.1 Carbohydrate

5.1.1 Total carbohydrate
5.1.2 Non-starch polysaccharides/dietary fibre

5.1.2.1 Cereal fibre
5.1.2.2 Vegetable fibre
5.1.2.3 Fruit fibre

5.1.3 Starch

5.1.3.1 Resistant starch

5.1.4 Sugars
5.1.5 Glycemic index, glycemic load

This heading refers to intrinsic sugars that are naturally incorporated into the cellular structure of foods, and also extrinsic sugars not incorporated into the cellular structure of foods. Results for intrinsic and extrinsic sugars should be presented separately. Count honey and sugars in fruit juices as extrinsic. They can be natural and unprocessed, such as honey, or refined such as table sugar. Any results related to specific sugars e.g. fructose should be reported here.

5.2 Lipids

5.2.1 Total fat
5.2.2 Saturated fatty acids
5.2.3 Monounsaturated fatty acids
5.2.4 Polyunsaturated fatty acids

5.2.4.1 n-3 fatty acids

Where available, results concerning alpha linolenic acid and long chain n-3 PUFA should be reported here, and if possible separately.

5.2.4.2 n-6 fatty acids
5.2.4.3 Conjugated linoleic acid

5.2.5 Trans fatty acids
5.2.6 Other dietary lipids, cholesterol, plant sterols and stanols.

For certain cancers, e.g. endometrium, lung, and pancreas, results concerning dietary cholesterol may be available. These results should be reported under this section.

5.3 Protein

5.3.1 Total protein
5.3.2 Plant protein
5.3.3 Animal protein

5.4 Alcohol

This section refers to ethanol the chemical. Results related to specific alcoholic drinks should be reported under 3.7 Alcoholic drinks. Past alcohol refers, for example, to intake at age 18, during adolescence, etc.

*5.4.1 Total Alcohol (as ethanol)

*5.4.1.1 Alcohol (as ethanol) from beer
*5.4.1.2 Alcohol (as ethanol) from wine
*5.4.1.3 Alcohol (as ethanol) from spirits
*5.4.1.4 Alcohol (as ethanol) from other alcoholic drinks
* 5.4.1.5 Total alcohol (as ethanol), lifetime exposure

* 5.4.1.6 Total alcohol (as ethanol), past
5.5 Vitamins

*5.5.0 Vitamin supplements
*5.5.0.1 Vitamin and mineral supplements
*5.5.0.2 Vitamin B supplement

5.5.1 Vitamin A

5.5.1.1 Retinol
5.5.1.2 Provitamin A carotenoids

5.5.2 Non-provitamin A carotenoids

Record total carotenoids under 5.5.2 as a separate category marked Total Carotenoids.

5.5.3 Folates and associated compounds

*5.5.3.1 Total folate
*5.5.3.2 Dietary folate
*5.5.3.3 Folate from supplements

Examples of the associated compounds are lipotropes, methionine and other methyl donors.

5.5.4 Riboflavin
5.5.5 Thiamin (vitamin B1)
5.5.6 Niacin
5.5.7 Pyridoxine (vitamin B6)
5.5.8 Cobalamin (vitamin B12)
5.5.9 Vitamin C
5.5.10 Vitamin D (and calcium)
5.5.11 Vitamin E
5.5.12 Vitamin K
5.5.13 Other

If results are available concerning any other vitamins not listed here, then these should be reported at the end of this section. In addition, where information is available concerning multiple vitamin deficiencies, these should be reported at the end of this section under ‘other’.

5.6 Minerals

5.6.1 Sodium
5.6.2 Iron
5.6.3 Calcium (and Vitamin D)
5.6.4 Selenium
5.6.5 Iodine
5.6.6 Other
Results are likely to be available on other minerals e.g. magnesium, potassium, zinc, copper, phosphorus, manganese and chromium for certain cancers. These should be reported at the end of this section when appropriate under ‘other’.

5.7 Phytochemicals

5.7.1 Allium compounds
5.7.2 Isothiocyanates
5.7.3 Glucosinolates and indoles
5.7.4 Polyphenols
5.7.5 Phytoestrogens eg genistein
5.7.6 Caffeine
5.7.7 Other

Where available report results relating to other phytochemicals such as saponins and coumarins. Results concerning any other bioactive compounds, which are not phytochemicals should be reported under the separate heading ‘other bioactive compounds’. Eg flavonoids, isoflavonoids, glycoalkaloids, cyanogens, oligosaccharides and anthocyanins should be reported separately under this heading.

5.8 Other bioactive compounds

6 Physical activity

6.1 Total physical activity (overall summary measures)

6.1.1 Type of activity

6.1.1.1 Occupational
6.1.1.2 Recreational
6.1.1.3 Household
6.1.1.4 Transportation

6.1.2 Frequency of physical activity

*6.1.2.1 Frequency of occupational physical activity
*6.1.2.2 Frequency of recreational physical activity

6.1.3 Intensity of physical activity

*6.1.3.1 Intensity of occupational physical activity
*6.1.3.2 Intensity of recreational physical activity

6.1.4 Duration of physical activity

*6.1.4.1 Duration of occupational physical activity
*6.1.4.2 Duration of recreational physical activity

6.2 Physical inactivity
6.3 Surrogate markers for physical activity e.g. occupation

7 Energy balance
7.1 Energy intake

*7.1.0.1 Energy from fats
*7.1.0.2 Energy from protein
*7.1.0.3 Energy from carbohydrates
*7.1.0.4 Energy from alcohol
*7.1.0.5 Energy from all other sources

7.1.1 Energy density of diet

7.2 Energy expenditure

1.1.1 8 Anthropometry

8.1 Markers of body composition

8.1.1 BMI
8.1.2 Other weight adjusted for height measures
8.1.3 Weight
8.1.4 Skinfold measurements
8.1.5 Other (e.g. DEXA, bio-impedance, etc)
8.1.6 Change in body composition (including weight gain)

8.2 Markers of distribution of fat

8.2.1 Waist circumference
8.2.2 Hips circumference
8.2.3 Waist to hip ratio
8.2.4 Skinfolds ratio
8.2.5 Other e.g. CT, ultrasound

8.3 Skeletal size

8.3.1 Height (and proxy measures)
8.3.2 Other (e.g. leg length)

8.4 Growth in fetal life, infancy or childhood

8.4.1 Birthweight,
8.4.2 Weight at one year
Annex 3. Tables of excluded and included biomarkers proposed by the SLR centre Bristol.

Extracted from: Food, Nutrition, Physical Activity and the Prevention of Cancer: A Global Perspective
Systematic Literature Review – Support Resource
SLR Prostate Cancer (pp 1185-1186)

The reviewers of the SLR centre Bristol used two chapters (Willet: Nutritional epidemiology (Chapter 9), 1998; Margetts and Nelson: Design concepts in nutritional epidemiology (Chapter 7), 1997) to guide their decisions. If there was no info, the biomarker was excluded. If one of the chapters stated the biomarker was useful, the data on validity were checked. Biomarkers with a correlation >0.20 were included. If the chapters stated that there were no good biomarkers for a nutrient or that the biomarker was valid for certain range of intake only, the biomarker was excluded. It was assumed that if biomarkers measured in plasma were valid, this would also be true for serum and vice versa.

The reviewers of the SLR centre Bristol have been more inclusive with respect to the validation required for biomarkers of important nutrients and have therefore added serum/plasma retinol, retinol binding protein, vit B6, ferritin, magnesium, erythrocyte superoxide dismutase (more details below). They have also included biomarkers where validity is not possible: this happens in the case of toxins and phytochemicals where dietary data are sparse. Various contaminants, such as cadmium, lead, PCBs in the serum are also included now although validity data are not available. The level of these chemicals in human tissues is often the only available measure of ingestion.
<table>
<thead>
<tr>
<th>Measured in</th>
<th>Include</th>
<th>Exclude</th>
</tr>
</thead>
<tbody>
<tr>
<td>Serum</td>
<td>Measured in</td>
<td>Include</td>
</tr>
<tr>
<td>Serum</td>
<td>Provit A carotenoids: Carotene, B-carotene, Alpha-carotene</td>
<td>Prealbumin</td>
</tr>
<tr>
<td>Serum</td>
<td>Nonprovit A carotenoids: Carotenoids, Lycopene, Cryptoxanthin (B-), Lutein+zeaxanthin</td>
<td>Saturated fatty acids, Monounsaturated fatty acids, Polysaturated fatty acids</td>
</tr>
<tr>
<td>Serum</td>
<td>Vit E: alpha-tocopherol, gamma tocopherol</td>
<td>Vit A Retinol: Retinol Binding Protein</td>
</tr>
<tr>
<td>Serum</td>
<td>Selenium</td>
<td>Cadmium</td>
</tr>
<tr>
<td>Serum</td>
<td>n-3 fatty acids: EPA (Eicosapentaenoic), DHA (Docosahexaenoic)</td>
<td>Vit D</td>
</tr>
<tr>
<td>Serum</td>
<td>Magnesium</td>
<td>Vit E: alpha-tocopherol, gamma tocopherol</td>
</tr>
<tr>
<td>Serum</td>
<td>Vit A: Retinol & Retinol Binding Protein</td>
<td>Vit C</td>
</tr>
<tr>
<td>Serum</td>
<td>Pyridoxic acid (vit B6)</td>
<td>Provit A carotenoids: Carotene, Alpha-carotene, B-carotene</td>
</tr>
<tr>
<td>Serum</td>
<td>Phytoestrogen: Genistein, Daidzein*</td>
<td>Nonprovit A carotenoids: Lycopene, Cryptoxanthin (B-), zeaxanthin, Lutein</td>
</tr>
<tr>
<td>Serum</td>
<td>[glycitein, O-desmethylangolensin, equol, enterodiol, and enterolactone]</td>
<td>Selenium, Selenoprotein, Folate, Iron: ferritin</td>
</tr>
<tr>
<td>Serum</td>
<td>Chemical food contaminants</td>
<td>Vit A Retinol: Retinol Binding Protein</td>
</tr>
<tr>
<td>Serum</td>
<td>Polychlorinated biphenyls (PCBs)</td>
<td>Cadmium, Cadmium/zinc ratio</td>
</tr>
<tr>
<td>Serum</td>
<td>Phytochemicals</td>
<td>EPA DHA fatty acids</td>
</tr>
<tr>
<td>Urine</td>
<td>4-pyridoxic acid (vit B6) in 24-h urine</td>
<td>Nitrosamines</td>
</tr>
<tr>
<td>Urine</td>
<td></td>
<td>Arsenic</td>
</tr>
<tr>
<td>Urine</td>
<td></td>
<td>Ferritin</td>
</tr>
<tr>
<td>Saliva</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erythrocyte</td>
<td>Linoleic acid</td>
<td>Minerals: Zinc, Copper</td>
</tr>
<tr>
<td>Erythrocyte</td>
<td>Selenium</td>
<td>Monounsaturated fatty acids</td>
</tr>
<tr>
<td>Erythrocyte</td>
<td>Superoxide dismutase</td>
<td>Polyunsaturated fatty acids, Saturated fatty acids</td>
</tr>
<tr>
<td>Erythrocyte</td>
<td>Cadmium</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>Vit D</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>Vit E: alpha-tocopherol, gamma tocopherol</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>Vit C</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>Provit A carotenoids: Carotene, Alpha-carotene, B-carotene</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>Nonprovit A carotenoids: Lycopene, Cryptoxanthin (B-), zeaxanthin, Lutein</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>Selenium, Selenoprotein, Folate, Iron: ferritin</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>Vit A Retinol: Retinol Binding Protein</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>Cadmium, Cadmium/zinc ratio</td>
<td></td>
</tr>
<tr>
<td>Plasma</td>
<td>EPA DHA fatty acids</td>
<td></td>
</tr>
<tr>
<td>Measured in</td>
<td>Include</td>
<td>Exclude</td>
</tr>
<tr>
<td>-------------</td>
<td>---------</td>
<td>---------</td>
</tr>
<tr>
<td>Adipose tissue</td>
<td>n-3 fatty acids: EPA (Eicosapentaenoic), DHA (Docosahexaenoic) n-6 fatty acids Trans fatty acids, Polyunsaturated fatty acids, Saturated fatty acids</td>
<td>Unsaturated fat, Monounsaturated fatty acids n-9 fatty acids other measures of polyunsat fa: M:S ratio, M:P ratio, n3-n6 ratio</td>
</tr>
<tr>
<td>leucocyte</td>
<td>Vit C</td>
<td>Zinc</td>
</tr>
<tr>
<td>Erythrocyte membrane</td>
<td>n-6 fatty acids: linoleic</td>
<td>n-6 fatty acids (other than linoleic) n-3 fatty acids: EPA (Eicosapentaenoic), DHA (Docosahexaenoic)</td>
</tr>
<tr>
<td>Hair</td>
<td></td>
<td>Minerals: Zinc, Copper, Manganese, Iron Cadmium</td>
</tr>
<tr>
<td>Toenails or fingernails</td>
<td>Selenium</td>
<td>Cadmium, zinc</td>
</tr>
</tbody>
</table>

Reasons for exclusion and inclusion of biomarkers proposed by the SLR centre Bristol.

(Source: Willet: Nutritional epidemiology (Chapter 9), 1998; Margetts and Nelson: Design concepts in nutritional epidemiology (Chapter 7), 1997)

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Measured in</th>
<th>Valid?</th>
<th>Reason (Willett)</th>
<th>Reason (Margetts / Nelson)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinol</td>
<td>Plasma/serum</td>
<td>Yes</td>
<td>Can be measured adequately, but limited interpretability in well-nourished population (p 190).</td>
<td>Main biochemical marker of vit A intake is serum retinol (p 194) although in western countries dietary intake of this vitamin is only a very minor determinant of its plasma levels.</td>
</tr>
<tr>
<td>Retinol-Binding protein</td>
<td>Serum</td>
<td>Yes</td>
<td>Retinol levels are highly correlated to RBP(p192).</td>
<td>May be measure of physiologically available form. Not if certain disease processes exist (p 192).</td>
</tr>
<tr>
<td>Beta-carotene</td>
<td>Plasma</td>
<td>Yes</td>
<td>Yes (p 194) although blood levels much more responsive to supplemental beta-carotene than beta-</td>
<td>Yes (p 197)</td>
</tr>
<tr>
<td>Vitamin</td>
<td>Matrix</td>
<td>Plasma</td>
<td>Leukocyte</td>
<td>Serum</td>
</tr>
<tr>
<td>---------</td>
<td>--------</td>
<td>--------</td>
<td>-----------</td>
<td>-------</td>
</tr>
<tr>
<td>Alpha-carotene</td>
<td>Plasma</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Beta-cryptoxanthin</td>
<td>Plasma</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Lutein+zeaxanthin</td>
<td>Plasma</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Lycopene</td>
<td>Plasma</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Vit E</td>
<td>Plasma</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Vit D: D25 (OH)D</td>
<td>Plasma</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Vit D: D25 (OH)2D</td>
<td>Plasma</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Vit D: Alkaline phosphatase activity</td>
<td>Plasma</td>
<td>No</td>
<td>No</td>
<td></td>
</tr>
<tr>
<td>Vit C</td>
<td>Plasma</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Leukocyte</td>
<td>Serum</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Serum</td>
<td>Serum</td>
<td>Yes</td>
<td>Yes</td>
<td></td>
</tr>
<tr>
<td>Exposure</td>
<td>Measured in</td>
<td>Valid?</td>
<td>Reason (Willett)</td>
<td>Reason (Margetts / Nelson)</td>
</tr>
<tr>
<td>--------------------------</td>
<td>----------------------</td>
<td>--------</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Vitamin B6</td>
<td>Plasma</td>
<td>Yes</td>
<td>Yes response to supplementation shows response in PLP. PLP better measure of short term rather than long term</td>
<td>Recent studies show that there is unlikely to be a strong correlation between dietary intake and plasma pyridoxal phosphate levels (PPL)</td>
</tr>
<tr>
<td>PLP and 4 Pyridoxic acid</td>
<td>Urinary</td>
<td>Yes</td>
<td>Urinary B6 may be more responsive to recent dietary intake than plasma PLP. Random samples of urine 4–pyridoxic acid correlate well with 24 hour collections</td>
<td></td>
</tr>
<tr>
<td>Folacin (folate)</td>
<td>Serum, Erythrocyte</td>
<td>Yes</td>
<td>Yes good correlation with dietary folate in both serum and erythrocytes</td>
<td>Used for assessing folate status Table 7.11p</td>
</tr>
<tr>
<td>Magnesium</td>
<td>Serum</td>
<td>Yes</td>
<td>Yes stronger correlation with supplement users than with dietary Mg</td>
<td></td>
</tr>
<tr>
<td>Iron</td>
<td>Serum, Hair/nails</td>
<td>No, No</td>
<td>No, short-term variability is very high (p 208). No, remains to be determined</td>
<td></td>
</tr>
<tr>
<td>Iron: Ferritin</td>
<td>Serum</td>
<td>Yes</td>
<td>Meat intake predicts serum ferritin level (p 208)</td>
<td>No marker of iron intake is satisfactory (p. 192)</td>
</tr>
<tr>
<td>Copper: Superoxide dismutase</td>
<td>Erythrocyte</td>
<td>Yes</td>
<td>Among four men fed a copper deficient diet for 4 months, erythrocyte S.O.D declined for all 4. Copper repletion restored S.O.D levels</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Plasma/serum</td>
<td>No</td>
<td>No (p 211): large number of lifestyle factors/pathologic conditions probably alter blood copper concentrations (smoking, infections)</td>
<td></td>
</tr>
<tr>
<td>Copper</td>
<td>Hair</td>
<td>No</td>
<td>No evidence (212) and data suggests influenced by external contamination</td>
<td>No. Copper-dependent enzyme superoxide dismutase in erythrocytes and copper-protein complex caeroplasm in serum have been shown to be associated with copper intake, but these markers may be influenced by nondietary factors (p 193)</td>
</tr>
<tr>
<td>Selenium</td>
<td>Blood components, Toenails</td>
<td>Yes</td>
<td>Yes. Erythrocyte is probably superior to serum as measure of long-term intake (p 206). Lower influence of environment in countries</td>
<td>Yes (p 193). Relationship between selenium intake and biomarkers is reasonably good. Urine: reasonable marker, plasma</td>
</tr>
</tbody>
</table>
where wearing shoes is norm (toenails). Selenium status is reduced by smoking, also in older persons (p 207); Relationship of selenium with disease may be modified by other antioxidants (vit E and C) reflects intake provided that the range of variation is large. Red cell and glutathione peroxidase are markers of longer-term intakes. Hair and toenails are alternative possibilities, although contamination of hair samples with shampoo must be controlled for

<table>
<thead>
<tr>
<th>Exposure</th>
<th>Measured in</th>
<th>Valid?</th>
<th>Reason (Willett)</th>
<th>Reason (Margetts / Nelson)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glutathione peroxidase</td>
<td>Plasma Serum Erythrocytes Blood</td>
<td>No</td>
<td>Is poor measure of selenium intake among persons with moderate and high exposure (p 206)</td>
<td></td>
</tr>
<tr>
<td>Zinc Metallothionein levels</td>
<td>Any</td>
<td>No</td>
<td>No (p 212) May be marker of short-term intake (p 213)</td>
<td>No biochemical marker is a good indicator of zinc intake (p 192/193). This is, in general terms, also true for other trace metal nutrients such as copper, manganese, chromium, etc</td>
</tr>
<tr>
<td>Lipids: total fats</td>
<td>Any</td>
<td>No</td>
<td>No (p 213)</td>
<td>No, there are no markers of total fat intake (p 215)</td>
</tr>
<tr>
<td>Cholesterol, LDL Lipoprotein levels</td>
<td>Serum</td>
<td>No</td>
<td>No, but may be useful to predict dietary changes but not for dietary intake (p 215)</td>
<td>No, relationship dietary cholesterol and lipoprotein levels of cholesterol are complex and appears to vary across range of intake (p218)</td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>Plasma Adipose tissue</td>
<td>No Yes</td>
<td>Plasma linoleic acid can discriminate between groups with relatively large differences in intake but performs less well on an individual basis (p 220) Yes (p 220)</td>
<td>No consistent relation between dietary linoleic acid intake and plasma linoleic acid (p 220). Across the range of fatty acids in the diet, fatty acids levels in blood and other tissue (adipose tissue) reflect the dietary levels. NB levels are not comparable across tissues</td>
</tr>
<tr>
<td>Marine omega-3 fatty acids (EPA, DHA)</td>
<td>Serum Plasma Adipose tissue</td>
<td>Yes</td>
<td>Yes (p 222/223), although dose-response relation remains to be determined</td>
<td></td>
</tr>
<tr>
<td>Monounsaturated fatty acids (oleic acid)</td>
<td>Plasma Adipose tissue</td>
<td>No No</td>
<td>No, plasma levels are poor predictors of oleic acid intake, but adipose tissue may weakly reflect oleic acid intake (p. 224). Validity is too low</td>
<td></td>
</tr>
<tr>
<td>Exposure</td>
<td>Measured in</td>
<td>Valid?</td>
<td>Reason (Willett)</td>
<td>Reason (Margetts / Nelson)</td>
</tr>
<tr>
<td>----------------------------------</td>
<td>----------------------</td>
<td>--------</td>
<td>-----------------------------------</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Polyunsat fatty acids</td>
<td>Adipose tissue</td>
<td>Yes</td>
<td>Yes (p 220)</td>
<td>No info</td>
</tr>
<tr>
<td>Saturated fatty acids (Palmitic acid, stearic acids)</td>
<td>Plasma</td>
<td>Yes</td>
<td>Yes, long term sat fatty acid intake may be reflected in adipose tissue levels (p 224)</td>
<td>No info</td>
</tr>
<tr>
<td></td>
<td></td>
<td>No</td>
<td>No, levels of palmitic and stearic acids in plasma do not provide a simple index of intake (p 224).</td>
<td></td>
</tr>
<tr>
<td>Trans-fatty acids</td>
<td>Adipose tissue</td>
<td>Yes</td>
<td>Yes (p 225)</td>
<td>No info</td>
</tr>
<tr>
<td>Protein</td>
<td>Any</td>
<td>No</td>
<td>No (p 226)</td>
<td>No info</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Urine</td>
<td>Yes</td>
<td>Yes, but several 24-h samples are needed to provide a stable estimate of nitrogen intake (p 227) Nitrogen excretion increases with body size and exercise and decreased caloric intake</td>
<td>Yes (p 219) One assumes that subjects are in nitrogen Balance</td>
</tr>
</tbody>
</table>
Data on validity and reliability of included biomarkers

Extracted from: Food, Nutrition, Physical Activity and the Prevention of Cancer: A Global Perspective
Systematic Literature Review – Support Resource
SLR Prostate Cancer (pp 1187-1189)

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Biologic tissue</th>
<th>Val./reproduc</th>
<th>Coef</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Retinol</td>
<td>Plasma</td>
<td>Validity</td>
<td>0.17</td>
<td>Borderline Correlation between pre-formed vit A intake and plasma retinol. However plasma retinol is a recognized marker of vit A nutritional status for undernourished populations</td>
</tr>
<tr>
<td>Beta-carotene</td>
<td></td>
<td></td>
<td>0.51</td>
<td>Correlation between plasma beta-carotene level (averaged from 2 samples taken 1 week apart) and a 7-day diet record estimate of beta-carotene in 98 non-smoking women (Willett, p 194).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0.38</td>
<td>Cross-sectional correlation between dietary intake of carotene and plasma betacarotene in 902 adult females. In males (n=880): r=0.20 (Margetts, table 7.9a).</td>
</tr>
<tr>
<td>Beta-cryptoxanthin</td>
<td>Plasma</td>
<td>Validity</td>
<td>0.49</td>
<td>Correlation between plasma beta-carotene level (averaged from 2 samples taken 1 week apart) and a 7-day diet record estimate of betacarotene in 902 adult females. In males (n=880): r=0.20 (Margetts, table 7.9a).</td>
</tr>
<tr>
<td>Lutein+zeaxanthin</td>
<td>Plasma</td>
<td>Validity</td>
<td>0.31</td>
<td>Cross-sectional correlation between dietary intake of carotene and plasma betacarotene in 902 adult females. In males (n=880): r=0.20 (Margetts, table 7.9a).</td>
</tr>
<tr>
<td>Lycopene</td>
<td>Plasma</td>
<td>Validity</td>
<td>0.50</td>
<td>Cross-sectional correlation between dietary intake of carotene and plasma betacarotene in 902 adult females. In males (n=880): r=0.20 (Margetts, table 7.9a).</td>
</tr>
<tr>
<td>Alpha-carotene</td>
<td>Plasma</td>
<td>Validity</td>
<td>0.58</td>
<td>Cross-sectional correlation between dietary intake of carotene and plasma betacarotene in 902 adult females. In males (n=880): r=0.20 (Margetts, table 7.9a).</td>
</tr>
<tr>
<td>Carotenoids</td>
<td>Plasma</td>
<td>Reproducibility</td>
<td>≥080</td>
<td>Within-person variability of plasma levels over 1 week (Willett, p 194).</td>
</tr>
<tr>
<td>Vitamin E</td>
<td>Plasma</td>
<td>Validity</td>
<td>0.53</td>
<td>Lipid-adjusted alpha-tocopherol measurements and estimated intake (incl. supplements). After excluding supplement users: r=0.35 (Willett, p 196)</td>
</tr>
</tbody>
</table>
Plasma Reproducibility

Unadjusted repeated measures over a 6-year period (p 188). Adjusting for serum cholesterol reduced correlation to r=0.46 (p 188). Also r=0.65 was found over a 4-year period in 105 adults in Finland (Willett, p 196).

Plasma Validity

Cross-sectional correlation between dietary intake of vit E and plasma vit E in 880 adult males. In females (n=906): r=0.14 (Margetts, table 7.9a).

<table>
<thead>
<tr>
<th>Nutrient</th>
<th>Biologic tissue</th>
<th>Val/reprod</th>
<th>Coef</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitamin D: D25 (OH)D</td>
<td>Plasma</td>
<td>Validity</td>
<td>0.35</td>
<td>Correlation between FFQ estimate of vit D intake (including supplements) with plasma D25 (OH)D (n=139). Correlation excluding supplement users: r=0.25 (Willett, p 199).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0.18</td>
</tr>
<tr>
<td></td>
<td>Serum</td>
<td>Validity</td>
<td>0.24</td>
<td>Correlation between estimated vit D intake from food and supplements (based on 24 h recall) and serum D25 (OH)D (n=373 healthy women). Food only: r=0.11 (Willett, p 199).</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>Plasma</td>
<td>Validity</td>
<td>0.43</td>
<td>Unadjusted correlation between questionnaire-derived dietary ascorbic acid intake and plasma ascorbic acid concentration in a heterogeneous population. Diet only: r=38 (Table 9.1). Correlation is 0.31 for leukocyte ascorbic acid concentration. (Willett, p 200)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reproducibility</td>
<td>0.28</td>
<td>Repeated measures in men obtained 6 years apart (Willett, p 201)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Validity</td>
<td>0.43</td>
<td>Cross-sectional correlation between dietary intake of nutrients and biochemical markers in UK pre-school child study in males (n=369). In females (n=354) r=0.39 (Margetts, table 7.9b).</td>
</tr>
<tr>
<td>Nutrient</td>
<td>Biologic tissue</td>
<td>Val./reproduc</td>
<td>Coef</td>
<td>Details</td>
</tr>
<tr>
<td>----------</td>
<td>----------------</td>
<td>---------------</td>
<td>------</td>
<td>---------</td>
</tr>
<tr>
<td>Iron (ferritin)</td>
<td>Serum</td>
<td>Validity</td>
<td>0.16</td>
<td>Borderline 0.16 correlation with heme intake but only r=0.15 with total iron intake (Willett p 208). Included as marker of iron storage</td>
</tr>
<tr>
<td>Copper (Superoxide dismutase)</td>
<td>Erythrocyte</td>
<td>-</td>
<td>-</td>
<td>S.O.D levels reflect both depletion and repletion of Cu (Willett p 212)</td>
</tr>
<tr>
<td>Selenium</td>
<td>Serum</td>
<td>Validity</td>
<td>0.63</td>
<td>Correlation between selenium intake and serum selenium in South Dakotans (n=44)(Willett, p 186)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reproducibility</td>
<td>0.76</td>
<td>Average correlation between repeated measurements at four 3-month intervals in 78 adults (Willett, p 188)</td>
</tr>
<tr>
<td></td>
<td>Toenails</td>
<td>Validity</td>
<td>0.59</td>
<td>Correlation between selenium intake and toenail selenium level in South Dakotans (n=44) (Willett, p 186)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Reproducibility</td>
<td>0.48</td>
<td>Correlation for selenium levels in toenails collected 6 years apart from 127 US</td>
</tr>
<tr>
<td>Nutrient</td>
<td>Biologic tissue</td>
<td>Val./reprodu</td>
<td>Coef</td>
<td>Details</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>------</td>
<td>---</td>
</tr>
<tr>
<td>Whole blood</td>
<td>Validity</td>
<td>0.62</td>
<td></td>
<td>Correlation between selenium intake and whole blood selenium in South Dakotans (n=44) (Willett, p 186)</td>
</tr>
<tr>
<td></td>
<td>Reproducibility</td>
<td>0.95</td>
<td></td>
<td>Average correlation between repeated measurements at four 3-month intervals in 78 adults (Willett, p 188)</td>
</tr>
<tr>
<td>Linoleic acid</td>
<td>Adipose tissue</td>
<td>Validity</td>
<td>0.57</td>
<td>Correlation between dietary linoleic acid intakes determined from 7-day weighted diet records and the relative proportion of linoleic acid in adipose tissue in Scottish men (n=164). Also correlation between linoleic acid measured in adipose tissue and calculated from FFQ in 118 Boston-area men (Willett, p 220)</td>
</tr>
<tr>
<td></td>
<td>Reproducibility</td>
<td>0.68</td>
<td></td>
<td>Correlation with intake estimated from three 7-day weighted food records (Willett, p 223).</td>
</tr>
<tr>
<td>Eicosapentaenoic (n-3)</td>
<td>Adipose tissue</td>
<td>Validity</td>
<td>0.40</td>
<td>Correlation with intake estimated from three 7-day weighted food records (Willett, p 223).</td>
</tr>
<tr>
<td></td>
<td>Reproducibility</td>
<td>0.68</td>
<td></td>
<td>Correlation over 8 months in 27 men and women aged 20-29 (Willett, p 223).</td>
</tr>
<tr>
<td></td>
<td>Plasma</td>
<td>Validity</td>
<td>0.23</td>
<td>Correlation of cholesterol ester fraction and intake in 3,570 adults (Willett, p 223)</td>
</tr>
<tr>
<td></td>
<td>Reproducibility</td>
<td>0.38</td>
<td></td>
<td>Correlation of two measurements taken 6 years apart in study of 759 Finnish youths (Willett, p 219)</td>
</tr>
<tr>
<td>Docosahexaenoic (n-3)</td>
<td>Adipose tissue</td>
<td>Validity</td>
<td>0.66</td>
<td>Correlation with intake estimated from three 7-day weighted food records (Willett, p 223).</td>
</tr>
<tr>
<td></td>
<td>Reproducibility</td>
<td>0.93</td>
<td></td>
<td>Correlation over 8 months in 27 men and women aged 20-29 (Willett, p 223).</td>
</tr>
<tr>
<td></td>
<td>Plasma</td>
<td>Validity</td>
<td>0.42</td>
<td>Correlation of cholesterol ester fraction and intake in 3,570 adults (Willett, p 223)</td>
</tr>
<tr>
<td></td>
<td>Reproducibility</td>
<td>0.38</td>
<td></td>
<td>Correlation of two measurements taken 6 years apart in study of 759 Finnish youths (Willett, p 219)</td>
</tr>
<tr>
<td>Polyunsaturated fatty acids</td>
<td>Adipose tissue</td>
<td>Validity</td>
<td>0.80</td>
<td>Correlation between % of polyunsaturated fatty acid relative to total fatty acid intake and relative % of adipose tissue</td>
</tr>
<tr>
<td>Nutrient</td>
<td>Biologic tissue</td>
<td>Val./reproduced</td>
<td>Coef</td>
<td>Details</td>
</tr>
<tr>
<td>------------------------</td>
<td>-----------------</td>
<td>-----------------</td>
<td>------</td>
<td>--</td>
</tr>
<tr>
<td>Palmitic acid</td>
<td>Adipose tissue</td>
<td>Validity</td>
<td>0.27</td>
<td>Correlation adipose tissue measurement with a FFQ estimate among 118 men. A correlation of 0.14 was reported among women. Among 20 healthy subjects, correlations between normal intake of total saturated fatty acids and fatty acid composition of triglycerides in adipose tissue was 0.57 (Willett, p 224)</td>
</tr>
<tr>
<td>Stearic acid</td>
<td>Adipose tissue</td>
<td>Validity</td>
<td>0.56</td>
<td>Among 20 healthy subjects, correlations between normal intake of total saturated fatty acids and fatty acid composition of triglycerides in adipose tissue (Willett, p 224)</td>
</tr>
<tr>
<td>Trans fatty acids</td>
<td>Adipose tissue</td>
<td>Validity</td>
<td>0.40</td>
<td>Correlation between adipose trans and intake estimated from the average of two FFQ among 140 Boston-area women. Previous study: 115 Boston area women, correlation of 0.51 between trans intake estimated from a single FFQ and a fatty acid measurement. Among 118 Boston-area men: correlation of 0.29 between trans fatty acid measured in adipose and by FFQ (Willett, p 225)</td>
</tr>
<tr>
<td>Nitrogen</td>
<td>Urine</td>
<td>Validity</td>
<td>0.69</td>
<td>Correlation between nitrogen intakes estimated from weighted food records of 16 days and the average of six 24-h urine nitrogen levels (160 women) (Willett, p 227)</td>
</tr>
<tr>
<td>Phyto Oestrogens</td>
<td>Plasma 24 hr urine</td>
<td>Validity</td>
<td>0.97</td>
<td>Urinary excretion (24 h) and plasma concentrations of PO were significantly related to measured dietary PO intake (r 0.97, P<0.001 and r 0.92, P<0.001 respectively). These findings validate the PO database and indicate that 24 h urinary excretion and timed plasma concentrations can be used as biomarkers of PO intake. Br J</td>
</tr>
<tr>
<td>Enterodiol</td>
<td>Enterolactone</td>
<td>Serum</td>
<td>Urine</td>
<td>Validity</td>
</tr>
<tr>
<td>-----------</td>
<td>---------------</td>
<td>-------</td>
<td>-------</td>
<td>----------</td>
</tr>
</tbody>
</table>