WCRF/AICR Systematic Literature Review Continuous Update Project

The Associations between Food, Nutrition and Physical Activity and the Risk of Endometrial Cancer

Imperial College London Continuous Update Project Team Members

> Teresa Norat Dagfinn Aune Deborah Navarro Rosenblatt Snieguole Vingeliene Leila Abar

> > WCRF Coordinator: Rachel Thompson

Statistical advisor: Darren C. Greenwood

Date completed: December 5th 2012

Table of contents

Table of contents	2
List of figures	4
List of tables	7
List of abbreviations	
Background	
Matrices presented in the WCRF/AICR 2007 Expert Report	
Modifications to the existing protocol	
Continuous Update Project: Results of the search	
1. Randomised controlled trials (RCT). Results by exposure	
1.5 Low fat diet	
5.6.3 Calcium and vitamin D	
2 Cohort studies. Results by exposure.	
1 Patterns of diet	
1.3 -1.4 Individual level dietary pattern	
1.6 Breastfeeding	
2 Foods	
2.2.1 Vegetables	
2.2.2 Fruits	
2.5.1.2 Processed meat	
2.5.1.3 Red meat	
3 Beverages	
3.6.1 Coffee	
3.6.1.1 Decaffeinated coffee	
3.6.2 Tea	61
4 Food production, preservation, processing and preparation	
4.4.2 Acrylamide	
5 Dietary constituents	
5.1 Carbohydrate	
5.1.5 Glycaemic index	
5.1.6 Glycaemic load	
	2

5.1.2 Fibre	
5.2.1 Total Fat	100
5.4.1 Alcohol (ethanol)	
5.4.1.1 Ethanol from beer	
5.4.1.2 Ethanol from wine	
5.4.1.3 Ethanol from liquor	
5.5.3 Folate (Dietary only)	
5.5.13 Multivitamins	
5.7.5 Total Isoflavones	
6 Physical activity	
6.1.1.1 Occupational physical activity	
6.1.1.2 Recreational physical activity	
6.1.1.4 Walking/biking (mainly for transportation)	
6.1.1.5 Exercise/sport	
6.1.3 Vigorous activity	
6.2 Sitting time	
8 Anthropometry	179
8.1.1 BMI	
8.1.1 BMI at age 18-25 years	
8.1.6 Weight change	
8.2.1 Waist circumference	
8.2.3 Waist-to-hip ratio	
8.3.1 Height	
Reference List	

List of figures

Figure 1 Highest versus lowest forest plot of vegetables and endometrial cancer
Figure 2 Dose-response meta-analysis of vegetables and endometrial cancer -per 1 serving/day
Figure 3 Dose-response graph of vegetables and endometrial cancer
Figure 4 Highest versus lowest forest plot of fruits and endometrial cancer
Figure 5 Dose-response meta-analysis of fruits and endometrial cancer -per 1 serving/day 35
Figure 6 Dose-response graph of fruits and endometrial cancer
Figure 7 Highest versus lowest forest plot of processed meat consumption and endometrial
cancer
Figure 8 Dose-response meta-analysis of processed meat and endometrial cancer - per 50 g/day
Figure 9 Dose-response graph of processed meat and endometrial cancer
Figure 10 Highest versus lowest forest plot of red meat consumption and endometrial cancer 45
Figure 11 Dose-response meta-analysis of red meat and endometrial cancer - per 50 g/day 46
Figure 12 Dose-response graph of red meat and endometrial cancer
Figure 13 Highest versus lowest forest plot of coffee and endometrial cancer
Figure 14 Dose-response meta-analysis of coffee and endometrial cancer, per 1 cup/d 53
Figure 15 Funnel plot of coffee and endometrial cancer 54
Figure 16 Dose-response graph of coffee and endometrial cancer
Figure 17 Highest versus lowest forest plot of decaffeinated coffee and endometrial cancer 59
Figure 18 Dose-response meta-analysis of decaffeinated coffee and endometrial cancer, per 1
cup/d
Figure 19 Dose-response graph of decaffeinated coffee and endometrial cancer
Figure 20 Highest versus lowest forest plot of tea consumption and endometrial cancer
Figure 21 Dose-response meta-analysis of tea and endometrial cancer - per 1 cup/day
Figure 22 Dose-response graph of tea and endometrial cancer
Figure 23 Highest versus lowest forest plot of acrylamide and endometrial cancer
Figure 24 Dose-response meta-analysis of acrylamide and endometrial cancer, per 10 μ g/d71
Figure 25 Dose-response graph of acrylamide and endometrial cancer
Figure 26 Highest versus lowest forest plot of carbohydrate and endometrial cancer76
Figure 27 Dose-response meta-analysis of carbohydrate and endometrial cancer, per 100 g/d 77
Figure 28 Funnel plot of carbohydrate intake and endometrial cancer
Figure 29 Dose-response graph of carbohydrate and endometrial cancer
Figure 30 Highest versus lowest forest plot of glycaemic index and endometrial cancer
Figure 31 Dose-response meta-analysis of glycaemic index and endometrial cancer, per 10
units/d
Figure 32 Funnel plot of glycaemic index and endometrial cancer
Figure 33 Dose-response graph of glycaemic index and endometrial cancer
Figure 34 Highest versus lowest forest plot of glycaemic load and endometrial cancer90
Figure 35 Dose-response meta-analysis of glycaemic load and endometrial cancer, per 50
units/day
Figure 36 Funnel plot of glycaemic load and endometrial cancer
Figure 37 Dose-response graph of glycaemic load and endometrial cancer

Figure 38 Figure Highest versus lowest forest plot of fibre and endometrial cancer	97
Figure 39 Figure Dose-response meta-analysis of fibre and endometrial cancer, per 10 g/c	d 98
Figure 40 Figure Dose-response graph of fibre and endometrial cancer	99
Figure 41 Highest versus lowest forest plot of total fat intake and endometrial cancer	103
Figure 42 Dose-response meta-analysis of total fat and endometrial cancer - per 10 g/day	· 103
Figure 43 Dose-response graph of total fat and endometrial cancer	104
Figure 44 Highest versus lowest forest plot of ethanol consumption and endometrial cance	er 111
Figure 45 Dose-response meta-analysis of ethanol and endometrial cancer - per 10 g/day	112
Figure 46 Funnel plot of ethanol consumption and endometrial cancer	113
Figure 47 Dose-response graph of ethanol and endometrial cancer	114
Figure 48 Nonlinear dose-response figure for total ethanol and endometrial cancer	115
Figure 49Scatter plot of risk estimates for total ethanol and endometrial cancer	115
Figure 50 Dose-response meta-analysis of ethanol and endometrial cancer - per 10 g/day,	,
stratified by hormone replacement therapy	117
Figure 51 Dose-response meta-analysis of ethanol and endometrial cancer - per 10 g/day,	,
stratified by menopausal status	118
Figure 52 Highest versus lowest forest plot of ethanol from beer intake and endometrial c	cancer
	122
Figure 53 Dose-response meta-analysis of ethanol from beer and endometrial cancer - pe	er 10
g/day	122
Figure 54 Dose-response graph of ethanol from beer and endometrial cancer	123
Figure 55 Highest versus lowest forest plot of ethanol from wine intake and endometrial	cancer
	128
Figure 56 Dose-response meta-analysis of ethanol from wine and endometrial cancer - pe	
g/day	
Figure 57 Dose-response graph of ethanol from wine and endometrial cancer	
Figure 58 Highest versus lowest forest plot of ethanol from liquor intake and endometrial	1
cancer	
Figure 59 Dose-response meta-analysis of ethanol from liquor and endometrial cancer - p	
g/day	
Figure 60 Dose-response graph of ethanol from liquor and endometrial cancer	
Figure 61 Highest versus lowest forest plot of dietary folate and endometrial cancer	
Figure 62 Dose-response meta-analysis of dietary folate and endometrial cancer - per 50	
Figure 63 Dose-response graph of dietary folate and endometrial cancer	
Figure 64 forest plot of multivitamin intake use vs. non-use and endometrial cancer	
Figure 65 Highest versus lowest forest plot of total isoflavones intake and endometrial ca	
Figure 66 Dose-response meta-analysis of total isoflavones and endometrial cancer - per	
g/day	147
Figure 67 Dose-response graph of total isoflavones and endometrial cancer	148
Figure 68 Highest versus lowest forest plot of occupational physical activity and endome	trial
cancer	152
Figure 69 Funnel plot occupational physical activity and endometrial cancer	153
Figure 70 Highest versus lowest forest plot of recreational physical activity and endometr	
Figure 71 Funnel plot recreational physical activity and endometrial cancer	
righte , righter plot recreational physical activity and chaometrial cancer	100

Figure 72 Highest versus lowest forest plot of recreational physical activity and endometrial
cancer after adjustment for BMI 161
Figure 73 Highest versus lowest forest plot of walking/biking and endometrial cancer 165
Figure 74 Funnel plot walking/biking (mainly for transportation) and endometrial cancer 166
Figure 75 Highest versus lowest forest plot of exercise/sport and endometrial cancer
Figure 76 Highest versus lowest forest plot of vigorous physical activity and endometrial
cancer
Figure 77 Highest versus lowest forest plot of sitting time and endometrial cancer 178
Figure 78 Highest versus lowest forest plot of BMI and endometrial cancer
Figure 79 Dose-response meta-analysis of BMI and endometrial cancer, per 5 units 189
Figure 80 Figure Dose-response meta-analysis of BMI and endometrial cancer, per 5 units,
stratified by menopausal status
Figure 81 Dose-response meta-analysis of BMI and endometrial cancer, per 5 units, stratified
by hormone replacement therapy use
Figure 82 Funnel plot of BMI and endometrial cancer
Figure 83 Dose-response graph of BMI and endometrial cancer
Figure 84 Nonlinear dose-response figure for BMI and endometrial cancer
Figure 85 Scatter plot of risk estimates for BMI and endometrial cancer 194
Figure 86 Highest versus lowest forest plot of BMI at age 18-25 years and endometrial cancer
(units=kg/m2)
Figure 87 Dose-response meta-analysis of BMI at age 18-25 years and endometrial cancer, per
5 kg/m2 201
Figure 88 Funnel plot of BMI at age 18-25 years and endometrial cancer 202
Figure 89 Dose-response graph of BMI at age 18-25 years and endometrial cancer 203
Figure 90 Nonlinear dose-response figure for BMI at age 18-25 and endometrial cancer 204
Figure 91 Scatter plot of risk estimates for BMI at age 18-25 and endometrial cancer
Figure 92 Highest versus lowest forest plot of weight change and endometrial cancer
Figure 93 Dose-response meta-analysis of weight change and endometrial cancer, per 5 kg. 211
Figure 94 Dose-response graph of weight change and endometrial cancer
Figure 95 Highest versus lowest forest plot of waist circumference and endometrial cancer. 217
Figure 96 Dose-response meta-analysis of waist circumference and endometrial cancer, per 5
cm
Figure 97 Dose-response graph of waist circumference and endometrial cancer 219
Figure 98 Nonlinear dose-response figure for waist circumference and endometrial cancer 220
Figure 99 Scatter plot of risk estimates for waist circumference and endometrial cancer 220
Figure 100 Highest versus lowest forest plot of waist-to-hip ratio and endometrial cancer 226
Figure 101 Dose-response meta-analysis of waist-to-hip ratio and endometrial cancer, per 0.1
units
Figure 102 Dose-response graph of waist-to-hip ratio and endometrial cancer
Figure 103 Nonlinear dose-response for waist-to-hip ratio and endometrial cancer 229
Figure 104 Scatter plot of risk estimates for waist-to-hip ratio and endometrial cancer 229
Figure 105 Highest versus lowest forest plot of height and endometrial cancer 235
Figure 106 Dose-response meta-analysis of height and endometrial cancer, per 5 cm
Figure 107 Dose-response graph of height and endometrial cancer
Figure 108 Nonlinear dose-response figure for height and endometrial cancer 238
Figure 109 Scatter plot of risk estimates for height and endometrial cancer

List of tables

Table 1 Number of relevant articles identified during the Second Expert Report and the CUF)
and total number of cohorts by exposure	. 20
Table 2 Studies on dietary patterns identified in the CUP	. 24
Table 3 Studies on breastfeeding identified in the CUP	
Table 4 Studies on vegetables identified in the CUP	
Table 5 Overall evidence on vegetables and endometrial cancer	
Table 6 Summary of results of the dose response meta-analysis of vegetables and endometria	
cancer	. 28
Table 7 Inclusion/exclusion table for meta-analysis of vegetables and endometrial cancer	. 29
Table 8 Studies on fruits identified in the CUP	. 33
Table 9 Overall evidence on fruits and endometrial cancer	. 33
Table 10 Summary of results of the dose response meta-analysis of fruits and endometrial	
cancer	. 33
Table 11 Inclusion/exclusion table for meta-analysis of fruits and endometrial cancer	. 34
Table 12 Studies on processed meat consumption identified in the CUP	. 38
Table 13 Overall evidence on processed meat consumption and endometrial cancer	. 38
Table 14 Summary of results of the dose response meta-analysis of processed meat	
consumption and endometrial cancer	. 38
Table 15 Inclusion/exclusion table for meta-analysis of processed meat consumption and	
endometrial cancer	. 39
Table 16 Studies on red meat consumption identified in the CUP	. 43
Table 17 Overall evidence on red meat consumption and endometrial cancer	. 43
Table 18 Summary of results of the dose response meta-analysis of red meat consumption ar	nd
endometrial cancer	. 43
Table 19 Inclusion/exclusion table for meta-analysis of red meat consumption and endometr	ial
cancer	. 44
Table 20 Studies on coffee identified in the CUP	. 50
Table 21 Overall evidence on coffee and endometrial cancer	. 50
Table 22 Summary of results of the dose-response meta-analysis of coffee and endometrial	
cancer	. 50
Table 23 Inclusion/exclusion table for meta-analysis of coffee and endometrial cancer	. 51
Table 24 Studies on decaffeinated coffee identified in the CUP	. 56
Table 25 Overall evidence on decaffeinated coffee and endometrial cancer	. 57
Table 26 Summary of results of the dose-response meta-analysis of decaffeinated coffee and	l
endometrial cancer	. 57
Table 27 Inclusion/exclusion table for meta-analysis of decaffeinated coffee and endometria	1
cancer	
Table 28 Studies on tea consumption identified in the CUP	
Table 29 Overall evidence on tea consumption and endometrial cancer	. 62
Table 30 Summary of results of the dose response meta-analysis of tea consumption and	
endometrial cancer	. 62
Table 31 Inclusion/exclusion table for meta-analysis of tea consumption and endometrial	
cancer	. 63

Table 32 Studies on acrylamide identified in the CUP	. 67
Table 33 Overall evidence on acrylamide and endometrial cancer	
Table 34 Summary of results of the dose-response meta-analysis of acrylamide and	
endometrial cancer	. 68
Table 35 Inclusion/exclusion table for meta-analysis of acrylamide and endometrial cancer .	. 69
Table 36 Studies on carbohydrate intake identified in the CUP	. 74
Table 37 Overall evidence on carbohydrate and endometrial cancer	
Table 38 Summary of results of the dose-response meta-analysis of carbohydrate and	
endometrial cancer	. 74
Table 39 Inclusion/exclusion table for meta-analysis of carbohydrate and endometrial cancer	r 75
Table 40 Studies on glycaemic index intake identified in the CUP	. 81
Table 41 Overall evidence on glycaemic index and endometrial cancer	. 81
Table 42 Summary of results of the dose-response meta-analysis of glycaemic index and endometrial cancer	01
Table 43 Inclusion/exclusion table for meta-analysis of glycaemic index and endometrial	. 01
cancer	82
Table 44 Studies on glycaemic load intake identified in the CUP	
Table 44 Studies on glycaemic load intake identified in the COT Table 45 Overall evidence on glycaemic load and endometrial cancer	
Table 46 Summary of results of the dose-response meta-analysis of glycaemic load and	. 00
endometrial cancer	88
Table 47 Inclusion/exclusion table for meta-analysis of glycaemic load and endometrial can	
Table 47 metusion/exclusion table for meta-analysis of grycaenne load and endometrial can	
Table 48 Table Studies on fibre identified in the CUP	
Table 49 Table Overall evidence on fibre and endometrial cancer	
Table 50 Table Summary of results of the dose-response meta-analysis of fibre and	.))
endometrial cancer	95
Table 51Table Inclusion/exclusion table for meta-analysis of fibre and endometrial cancer	
Table 52 Studies on total fat intake identified in the CUP	
Table 52 Studies on total fat intake identified in the COT Table 53 Overall evidence on total fat intake and endometrial cancer	
Table 54 Summary of results of the dose response meta-analysis of total fat intake and	101
endometrial cancer	101
Table 55 Inclusion/exclusion table for meta-analysis of total fat intake and endometrial canc	
Table 56 Studies on ethanol consumption identified in the CUP	
Table 50 Studies on ethanol consumption identified in the COT Table 57 Overall evidence on ethanol consumption and endometrial cancer	
Table 58 Summary of results of the dose response meta-analysis of ethanol consumption and	
endometrial cancer	
Table 59 Inclusion/exclusion table for meta-analysis of ethanol consumption and endometria	
cancer	
Table 60 RRs (95% CIs) for nonlinear analysis of total ethanol and endometrial cancer	
Table 61 Studies on ethanol from beer intake identified in the CUP	
Table 61 Studies on ethanol nom beer intake identified in the COT Table 62 Overall evidence on ethanol from beer intake and endometrial cancer	
Table 63 Summary of results of the dose response meta-analysis of ethanol from beer intake	
and endometrial cancer	
Table 64 Inclusion/exclusion table for meta-analysis of ethanol from beer intake and	
endometrial cancer	121
	-

Table 65 Studies on ethanol from wine intake identified in the CUP	. 125
Table 66 Overall evidence on ethanol from wine intake and endometrial cancer	. 125
Table 67 Summary of results of the dose response meta-analysis of ethanol from wine intak	æ
and endometrial cancer	. 126
Table 68 Inclusion/exclusion table for meta-analysis of ethanol from wine intake and	
endometrial cancer	. 127
Table 69 Studies on ethanol from liquor intake identified in the CUP	. 131
Table 70 Overall evidence on ethanol from liquor intake and endometrial cancer	
Table 71 Summary of results of the dose response meta-analysis of ethanol from liquor int	ake
and endometrial cancer	. 131
Table 72 Inclusion/exclusion table for meta-analysis of ethanol from liquor intake and	
endometrial cancer	. 132
Table 73 Studies on dietary folate identified in the CUP	. 135
Table 74 Overall evidence on dietary folate and endometrial cancer	. 136
Table 75 Summary of results of the dose response meta-analysis of dietary folate and	
endometrial cancer	. 136
Table 76 Inclusion/exclusion table for meta-analysis of dietary folate and endometrial cance	er
	. 137
Table 77 Studies on multivitamin identified in the CUP	. 141
Table 78 Overall evidence on multivitamin intake and endometrial cancer	. 141
Table 79 Summary results of meta-analysis of multivitamin intake (use vs. non-use) and	
endometrial cancer	. 141
Table 80 Inclusion/exclusion table for meta-analysis of multivitamin intake and endometria	ıl
cancer	. 142
Table 81 Studies on total isoflavones intake identified in the CUP	. 145
Table 82 Overall evidence on total isoflavones intake and endometrial cancer	. 145
Table 83 Summary of results of the dose response meta-analysis of total isoflavones intake	and
endometrial cancer	. 145
Table 84 Inclusion/exclusion table for meta-analysis of total isoflavones intake and	
endometrial cancer	146
Table 85 Studies on occupational physical activity identified in the CUP	150
Table 86 Overall evidence on occupational physical activity and endometrial cancer	150
Table 87 Summary of results of the highest vs. lowest meta-analysis of occupational physic	al
activity and endometrial cancer	150
Table 88 Inclusion/exclusion table for meta-analysis of occupational physical activity and	
endometrial cancer	151
Table 89 Studies on recreational physical activity identified in the CUP	156
Table 90 Overall evidence on recreational physical activity and endometrial cancer	156
Table 91 Summary of results of the highest vs. lowest meta-analysis of recreational physica	ıl
activity and endometrial cancer	157
Table 92 Inclusion/exclusion table for meta-analysis of recreational physical activity and	
endometrial cancer	158
Table 93 Studies on walking/biking (mainly for transportation) identified in the CUP	163
Table 94 Overall evidence on walking/biking (mainly for transportation) and endometrial	
cancer	163

Table 95 Summary of results of the highest vs. lowest meta-analysis of walking/biking (ma	•
for transportation) and endometrial cancer	. 163
Table 96 Inclusion/exclusion table for meta-analysis of walking/biking (mainly for	
transportation) and endometrial cancer	
Table 97 Studies on exercise/sport identified in the CUP	
Table 98 Overall evidence on exercise/sport and endometrial cancer	. 168
Table 99 Summary of results of the highest vs. lowest meta-analysis of exercise/sport and	1.50
endometrial cancer	
Table 100 Inclusion/exclusion table for meta-analysis of exercise/sport and endometrial ca	
Table 101 Studies on vigorous physical activity identified in the CUP	
Table 102 Overall evidence on vigorous physical activity identified in the COT	
Table 102 Overan evidence on vigorous physical activity and endometrial cancer	
activity and endometrial cancer	
Table 104 Inclusion/exclusion table for meta-analysis of vigorous physical activity and	. 172
endometrial cancer	173
Table 105 Studies on sitting time identified in the CUP	
Table 105 Studies on sitting time identified in the COT Table 106 Overall evidence on sitting time activity and endometrial cancer	
Table 100 Overan evidence on sitting time activity and endometrial cancer	. 170
endometrial cancer	. 176
Table 108 Inclusion/exclusion table for meta-analysis of sitting time and endometrial cance	
Table 109 Studies on BMI identified in the CUP	
Table 110 Overall evidence on BMI and endometrial cancer	
Table 111 Summary of results of the dose-response meta-analysis of BMI and endometrial	
cancer	
Table 112 Inclusion/exclusion table for meta-analysis of BMI and endometrial cancer	
Table 113 RRs (95% CIs) for nonlinear analysis of BMI and endometrial cancer	
Table 114 Studies on BMI at age 18-25 years identified in the CUP	
Table 115 Overall evidence on BMI at age 18-25 years and endometrial cancer	
Table 116 Summary of results of the dose-response meta-analysis of BMI at age 18-25 year	
and endometrial cancer	
Table 117 Inclusion/exclusion table for meta-analysis of BMI at age 18-25 years and	
endometrial cancer	. 199
Table 118 RRs (95% CIs) for nonlinear analysis of BMI at age 18-25 and endometrial cand	
	. 205
Table 119 Studies on weight change identified in the CUP	. 207
Table 120 Overall evidence on weight change and endometrial cancer	. 208
Table 121 Summary of results of the dose-response meta-analysis of weight change and	
endometrial cancer	. 208
Table 122 Inclusion/exclusion table for meta-analysis of weight change and endometrial ca	incer
	. 209
Table 123 Studies on waist circumference identified in the CUP	. 214
Table 124 Overall evidence on waist circumference and endometrial cancer	. 215
Table 125 Summary of results of the dose-response meta-analysis of waist circumference a	ınd
endometrial cancer	. 215

Table 126 Inclusion/exclusion table for meta-analysis of waist circumference and endometrial
cancer
Table 127 RRs (95% CIs) for nonlinear analysis of waist circumference and endometrial cancer
Table 128 Studies on waist-to-hip ratio identified in the CUP 223
Table 129 Overall evidence on waist-to-hip ratio and endometrial cancer
Table 130 Summary of results of the dose-response meta-analysis of waist-to-hip ratio and
endometrial cancer
Table 131 Inclusion/exclusion table for meta-analysis of waist-to-hip ratio and endometrial
cancer
Table 132 RRs (95% CIs) for nonlinear analysis of waist-to-hip ratio and endometrial cancer
Table 133 Studies on height identified in the CUP 231
Table 134 Overall evidence on height and endometrial cancer 232
Table 135 Summary of results of the dose-response meta-analysis of height and endometrial
cancer
Table 136 Inclusion/exclusion table for meta-analysis of height and endometrial cancer 233
Table 137 RRs (95% CIs) for nonlinear analysis of height and endometrial cancer 239

List of abbreviations

List of Abbreviations used in the CUP SLR

CUP	Continuous Update Project
WCRF/AICR	World Cancer Research Fund/American Institute for Cancer Research
SLR	Systematic Literature Review
RR	Relative Risk
LCI	Lower Limit Confidence Interval
UCI	Upper Limit Confidence Interval
HR	Hazard Ratio
CI	Confidence Interval
	ohort study names used in the CUP SLR
CTS	California Teachers Study
BSC	Breast Screening Cohort
BCDDP	Breast Cancer Detection Demonstration Project
CNBSS	Canada National Breast Screening Study
Sweden	Census and Cancer Environment Register
CPS II	Cancer Prevention Study II
EPIC	European Prospective Investigation into Cancer and Nutrition
EDGE	The Estrogen, Diet, Genetics, and Endometrial Study
IWHS (or IOWA)	Iowa Women's Health Study Cohort
HHC	Hawaii Historical Cohort
HUNT I & II	North-Trondelag Health Study
JCCS	Japan Collaborative Cohort study
JPHC	Japan Public Health Centre-based Prospective Study
KCPS	Korean Cancer Prevention Study
Lund Cohort	Lund University Cohort
MCS	Miyagi Cohort Study
MWS	Million Women's Study
MEC	Multiethnic Cohort Study
NSPT&NHS	Norwegian Health Surveys
NHS	Nurses' Health Study
NIH-AARP	NIH-AARP Diet and Health Study
NLCS (or NCS)	The Netherlands Cohort Study
NNHSS (or NHSS)	Cohort from Norwegian National Health Screening
NYUWHS	New York University Women's Health Study
OVS	Oxford Vegetarian Study
SFCTS	Sweden, Finland Co-twin study
SFB	San Francisco Bay Study
SMC	Swedish Mammography Cohort Study
STC (or STR)	Swedish Twin Cohort
SSC	Swedish Screening Cohort
VIP	Västerbotten Intervention Project
VHM &PP	The Vorarlberg Health Monitoring and Promotion Program
WHI	Women's Health Initiative
WHS	Women Health Study
WLHS	Women's Lifestyle and Health Study

Background

Matrices presented in the WCRF/AICR 2007 Expert Report

In the judgment of the Panel of the WCRF-AICR Second Expert Report the factors listed below modify the risk of cancers of the endometrium.

FOOD, NUTRITION, PHYSICAL ACTIVITY, AND CANCER OF THE ENDOMETRIUM

In the judgement of the Panel, the factors listed below modify the risk of cancer of the endometrium. Judgements are graded according to the strength of the evidence.

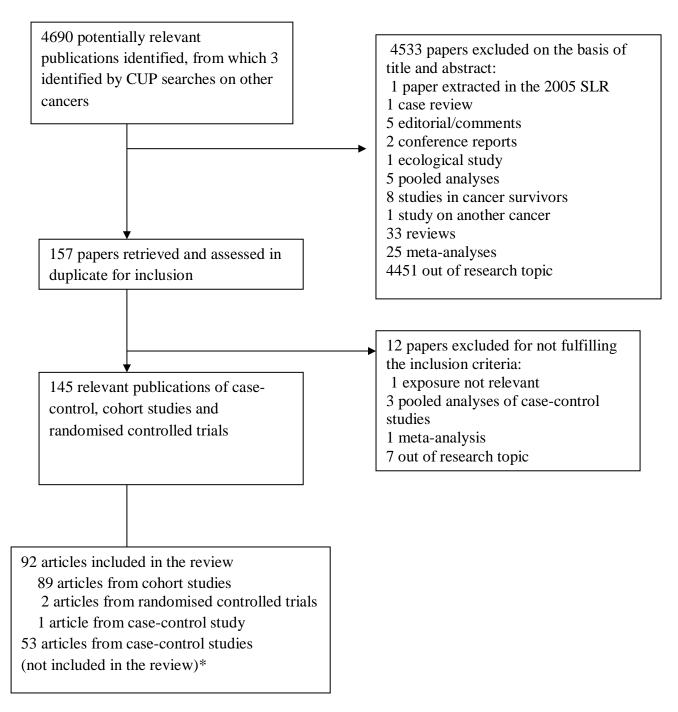
	DECREASES RISK INCREASES RISK	
Convincing		Body fatness
Probable	Physical activity ¹	Abdominal fatness
Limited — suggestive	Non-starchy vegetables ²	Red meat³ Adult attained height⁴
Limited — no conclusion	Cereals (grains) and their products; dietary fibre; fruits; pulses (legumes); soya and soya products; poultry; fish; eggs; milk and dairy products; total fat; animal fats; saturated fatty acids; cholesterol; coffee; alcohol; carbohydrates; protein; retinol; vitamin C; vitamin E; beta-carotene; lactation; energy intake	
Substantial effect on risk unlikely	None identified	
 Physical activity of all types: occupational, household, transport, and recreational. 		

- 2 Judgements on vegetables and fruits do not include those preserved by salting and/or pickling.
- 3 The term 'red meat' refers to beef, pork, lamb, and goat from domesticated animals.
- 4 Adult attained height is unlikely directly to modify the risk of cancer. It is a marker for genetic, environmental, hormonal, and also nutritional factors affecting growth during the period from preconception to completion of linear growth (see chapter 6.2.1.3).

For an explanation of all the terms used in the matrix, please see chapter 3.5.1, the text of this section, and the glossary.

Modifications to the existing protocol

- 1. The search team composition was modified. Deborah Navarro, Leila Abar and Snieguole Vingeliene worked in the search, article selection, data extraction and data analysis. Dagfinn Aune worked in data analysis.
- 2. In the original protocol, meta-analysis for a particular exposure would be conducted when 3 or more trials or cohort studies had been published after 2006, and if the total number of studies in the database totalised to more than 3 trials or 5 cohort studies. This was modified and the CUP team conducted meta-analysis for an exposure when the total number of cohort studies with enough data was two. This is because for many exposures no meta-analysis was conducted during the SLR 2005 for the Second Expert Report.
- 3. Meta-analyses for highest versus lowest categories have been conducted for physical activity. This is because no dose-response analyses were possible due to differences in assessing physical activity across studies.
- 4. Case-control studies were used in the meta-analysis of isoflavones by special request of one of the panel leaders (E Bandera).
- 5. Restricted cubic splines were used to model the nonlinear association of alcohol and endometrial cancer (Figure 48) because fractional polynomial models were not robust.


Notes on the figures and statistics used:

- Heterogeneity tests were conducted for dose-response meta-analysis but the interpretation should be cautious when the number of studies is often very low because these tests have low power. Inspection of the forest plots and funnel plots is recommended.
- I² statistic was calculated to give an indication of the extent of heterogeneity in doseresponse analysis. Low heterogeneity might account for less than 30 per cent of the variability in point estimates, and high heterogeneity for more than 50 per cent. These values are tentative, because the practical impact of heterogeneity in a meta-analysis also depends on the size and direction of effects.
- Heterogeneity test and I2 statistics are shown for "Highest vs Lowest" meta-analysis when this is the only type of meta-analyses conducted for an exposure.
- Only random effect models are shown in Tables and Figures.
- The dose-response forests plots show the relative risk estimate in each study, expressed per unit of increase. The relative risk is denoted by boxes (larger boxes indicate that the study has higher precision, and greater weight). Horizontal lines denote 95% Confidence intervals (CIs). Arrowheads indicate truncations. The diamond at the bottom shows combined-study summary relative risk estimates and corresponding 95% CIs. The units of increase are indicated in each figure. Only summary estimates using random effect models are shown.
- In Highest vs Lowest forest plots, the box represents the relative risk estimate for the highest vs the lowest category of exposure reported in the paper. An overall summary estimate is not shown. The summary estimates for the highest vs the lowest category of exposure using random effect models is shown in tables.
- The dose-response plot shows the relative risk estimates for each exposure category as published by each study. The relative risks estimates are plotted in the mid-point of each category level (x-axis) and are connected through lines.

Continuous Update Project: Results of the search

The search period is from the 1st of January 2006 until the 31st of December 2012. The number of studies showing separate results for pre- and post-menopausal women was low and analyses stratified by menopausal status could not be conducted.

Flow chart of the search for endometrial cancer – Continuous update project Search period January 1st 2006-December 31st 2012[¶]

 $^{#}$ 125 articles from case-control studies, 65 from cohort studies and 3 from randomised controlled trials were identified in the 2005 SLR

*Data from case-control studies on endometrial cancer identified during the CUP are not extracted to the CUP database and not included in this SLR, with the exception of one case-control study on isoflavones (by request of the Panel)

1. Randomised controlled trials (RCT). Results by exposure.

Two publications of The Women's Health Initiative (WHI) (Prentice et al, 2007; Brunner et al, 2011) were identified.

The Women's Health Initiative was initiated in 1992 as a major disease-prevention research program assessing the risks and benefits of hormone therapy and dietary modification among postmenopausal women. The average age of the participants was 62.3 years, about three-quarters were overweight or obese (BMI ≥ 25 kg/m2), and more than 40% reported a history of hypertension.

One year later, participants in the hormone therapy and dietary modification trials were invited to enrol in the randomized trial of calcium plus vitamin D (CaD) compared to placebo. The majority of study women (91%) joined the CaD trial during their first annual clinic visit with 9% the following year. Fifty-four per cent of CaD trial participants had been enrolled in one of the trials assessing hormone therapy, 69% had been enrolled in the trial assessing dietary modification, and 14% were in both trials.

1.5 Low fat diet

One publication of the dietary modification trial and endometrial cancer was identified (Prentice et al, 2007). No significant effect on endometrial cancer survival was observed.

The goals of the dietary modification intervention were reduced fat intake (20% or less of energy from fat), and increased intake of vegetables and fruit (5 or more servings/day) and grains (6 or more servings/day).

The primary cancer outcomes were colorectal and breast cancer. Endometrial cancer was listed as cancer site that would potentially benefit from the dietary modification intervention.

At 6 years, the intervention group had 8.1% lower percentage of energy from fat, consumed 1.1 servings more of vegetables and fruit and 0.4 servings more of grain than the comparison group.

The overall incidence of cancer of the endometrium did not differ between the intervention and the control groups (HR = 1.11, 95% CI = 0.88 to 1.40; P = .18), based on 27629 women (n = 11092 intervention, n = 16537 comparison) with a uterus at baseline. No indication of an intervention effect later in the intervention period was observed.

5.6.3 Calcium and vitamin D

One publication of the calcium plus vitamin D trial and endometrial cancer was identified (Brunner et al, 2011). No effect on endometrial cancer was observed.

The primary outcome was hip fracture. Endometrial cancer was a secondary outcome.

Postmenopausal women (N = 36,282) were randomized to daily use of 1,000 mg of calcium carbonate combined with 400 IU of vitamin D3 or placebo. Self-reported baseline total calcium and vitamin D intakes from diet were similar in the randomization groups and remained similar during the trial.

After a mean follow-up of seven years, the relative risk of endometrial cancer of cases compared to controls was 0.95 (95% CI: 0.71-1.28) (Brunner et al, 2011).Calcium and vitamin D supplementation in the dosage provided in this trial did not reduce the incidence of invasive cancers or cancer mortality in postmenopausal women. However, women who received calcium and vitamin D and were in the active arm of the dietary modification trial had a significantly lower risk of developing cancer. About one quarter of the participants stopped taking pills by the end of the study and serum 25(OH)D values were not measured.

2 Cohort studies. Results by exposure.

Table 1 Number of relevant articles identified during the Second Expert Report and the CUP and total number of cohorts by exposure.

The exposure code is the exposure identification in the database. Only exposures identified during the CUP are shown.

*The total number does not correspond to the sum of the number of articles because some cohort studies have published more than one article on the same exposure

Exposure code	Exposure name	Number o	Number of articles			
		Second Report				
1.4	Individual level dietary patterns	2	2	4		
1.6.1	Breastfeeding- Child		2	2		
2.1.1	Corn		1	1		
2.1.1	Rye		1	1		
2.1.1	Oatmeal		1	1		
2.1.1.3	Rye bread		1	1		
2.1.1.3	Wholegrain bread		1	1		
2.1.1.0.3	Crispbread		1	1		
2.1.2.1	Sweet Potatoes		1	1		
2.1.2.4	Wholegrain foods		1	1		
2.1.3	Wheat		1	1		
2.2.1	Non-starchy vegetables		1	1		
2.2.1.1	Carrots and Celery (umbelliferea)		1	1		
2.2.1.4.2	Spinach		1	1		
2.2.1.4.3	Lettuce		1	1		
2.2.1.5	Solanaceae		1	1		
2.2.2	Fruits		2	2		
2.2.2.1	Citrus fruits		1	1		
2.2.2.1	Rutaceae		1	1		
2.2.2.2	Rosaceae		1	1		
2.2.2.2.1	Bananas		1	1		
2.2.2.11	Grape		1	1		
2.2.2.2.4	Watermelon		1	1		
2.3	Legumes		1	1		
2.3	Leguminosae		1	1		
2.3.1	Soya foods		1	1		
2.3.2.2	Tofu		1	1		
2.5.1	Meat	1	1	2		
2.5.1.5	Liver		1	1		
2.5.1.2	Processed meat	1	3	4		
2.5.2.2.9	Sausages		1	1		
2.5.1.3	Red meat	1	4	5		
2.5.1.4	Poultry	1	1	2		
2.6.4	Fructose		1	1		

Exposure code	Exposure name	Number o	Number of articles			
		Second Report	CUP	cohort studies		
2.6.4	Sugars (as foods)		1	1		
2.7	Dairy foods		1	1		
2.7.1.1	Whole milk		1	1		
2.7.1.2	Low-fat milk		1	1		
2.7.2	Hard cheese		1	1		
2.7.3	Yoghurt		1	1		
2.9	Jam & Jellies		1	1		
2.9.1	Sweet foods		1	1		
2.9.18	Cookies		1	1		
3.4	Soft drinks		1	1		
3.6.1	Coffee	2	6	8		
3.6.1	Decaffeinated coffee		3	3		
3.6.2	Tea	1	2	3		
3.6.2.2	Green tea		1	1		
3.7.1	Alcoholic drinks		2	2		
3.7.1.1	Beers		1	1		
4.4.2	Acrylamide		3	3		
5.1	Carbohydrate	3	3	5*		
5.1.2	Fibre		3	3		
5.1.2.1	Cereal fibre		2	2		
5.1.2.2	Vegetable fibre		1	1		
5.1.2.3	Fruit fibre		1	1		
5.1.3	Starch		1	1		
5.1.4	Sugars (as nutrients)	1	1	2		
5.1.4	Mono/disaccharides	1	1	1		
5.1.4	Sucrose		2	2		
5.1.5	Glycaemic index	2	3	5		
5.1.5	Glycaemic load	2	4	6		
5.2	Total fats	2	1	3		
5.2	Animal fats	2	1	1		
5.2			1	1		
	Vegetable fats Seturated fatty acids					
5.2.2	Saturated fatty acids	1	1	1 2		
5.2.3	Monounsaturated fatty acids	1	1			
5.2.4	Polyunsaturated fatty acids		1	1		
5.2.4.1	n-3 fatty acids		1	1		
5.2.5	Trans fatty acids		1	1		
5.3.1	Methionine		1	1		
5.4	Alcohol (as ethanol)	5	7	9*		
5.4	Ethanol from beer		4	4		
5.4	Ethanol from spirit (hard liquor)		4	4		
5.4	Ethanol from wine		4	4		

Exposure code	Exposure name	Number o	Number of articles			
		Second Expert Report	CUP	number of cohort studies		
5.4.1	Alcohol from beer		1	1		
5.4.2	Alcohol from wine		1	1		
5.5.1	Vitamin A		1	1		
5.5.1.1	Retinol		1	1		
5.5.1.2	Alpha-carotene		1	1		
5.5.1.2	Beta-carotene		1	1		
5.5.10	Plasma vitamin D		1	1		
5.5.10	Dietary vitamin D		1	1		
5.5.11	Vitamin E		1	1		
5.5.13	Antioxidant indices		1	1		
5.5.13	Multivitamin supplement		3	3		
5.5.2	Lutein and zeaxanthin		1	1		
5.5.2	Lycopene		1	1		
5.5.2	Total carotenoids		1	1		
5.5.3	Dietary folate	1	2	2*		
5.5.4	Riboflavin		1	1		
5.5.5	Thiamin (vitamin B1)		1	1		
5.5.6	Niacin		1	1		
5.5.7	Pyridoxine (vitamin B6)		1	1		
5.5.8	Cobalamin (vitamin B12)		1	1		
5.5.9	Vitamin C		1	1		
5.6.2	Dietary heme iron		1	1		
5.6.2	Iron		2	2		
5.6.2	Heme iron		1	1		
5.6.6	Cadmium		2	2		
5.7.5	Daidzein		1	1		
5.7.5	Genistein		1	1		
5.7.5	Glycitein		1	1		
5.7.5	Enterolactone		1	1		
5.7.5	Total isoflavones		1	1		
5.8	Flavonoids		1	1		
<u>5.8</u> 6.1	Total physical activity	1	1	2		
6.1.1	Non-recreational activity	1				
6.1.1		3	1 2	1 5		
	Occupational physical activity	3		1		
6.1.1.2 6.1.1.2	Bicycling	1	1 3	4		
	Exercise/sport		5			
6.1.1.2	Recreational activity	4		9		
6.1.1.2	Stair climbing		1	1		
6.1.1.2	Walking		1	1		
6.1.1.3	Gardening		2	2		

Number of relevant articles (cont.)

Exposure code	Exposure name	Number o	Total number of	
		Second Report	CUP	cohort studies
6.1.1.3	Household activity	1	1	2
6.1.1.4	Transportation (walking/biking)	1	4	5
6.1.3	Vigorous activity	1	3	4
6.1.3.2	Walking pace		1	1
6.1.4	Duration of physical activity		1	1
6.1.4.1	Duration of occupation		1	1
6.1.4.2	Duration of recreational activity		1	1
6.1.4.2	Duration of walking		2	2
6.2	Sitting time		3	3
7.1	Energy Intake	1	4	5
8.1.1	BMI	17	22	35
8.1.1	BMI at age 18-25 years	3	4	7
8.1.2	Weight for height		1	1
8.1.3	Weight	3	2	4
8.1.6	BMI change		1	1
8.2.1	Waist circumference	2	3	5
8.2.2	Hips circumference		2	2
8.2.3	Waist to hip ratio	4	4	5*
8.3.1	Height	12	4	13*
8.4.1	Birthweight	1	3	4

1 Patterns of diet

1.3 -1.4 Individual level dietary pattern

Methods

Overall, four cohort studies have been identified, two studies during the CUP and two during the SLR 2005. Different definitions of dietary patterns were used and it was not possible to estimate a summary measure of association.

Main results

Risk of endometrial cancer did not differ in British vegetarians and fish eaters compared to meat eaters. The number of cases of endometrial cancer was low (Key, 2009). In the Cancer Prevention Study II Nutrition Cohort, the risk of endometrial cancer was not related to the consumption of high-beta-carotene foods and high-lycopene foods. There was an increased risk associated with consumption of fruits and vegetables high in lutein and vitamin C (p-trend <= 0.04 and p-trend <= 0.03, respectively). The largest contributor to lutein-containing vegetables was salad (59 %), followed by broccoli (32 %) and spinach (6 %). Consuming salad three times per week as compared with less than once per week was associated with higher risk (RR = 1.46, 95 % CI: 1.12- 1.91; p-trend <0.05). For citrus fruits, the largest contributor was orange juice (49 %); orange juice was not significantly positively related to risk (McCullough et al, 2007).

				Years	RR	LCI	UCI	Contrast
Author,	Country	Study	Cases	of				
year	Country	name	Cuses	follow-				
				up				
			71 Meat					Fish eater vs meat
		OVS,	eaters, 8		0.61	0.29	1.30	eater
Key, 2009	UK	EPIC-	fish eaters,	12.2	0.75	0.45	1.28	Vegetarian vs meat
		Oxford	22		0.75	0.15	1.20	eater
			vegetarians					Cutor
					0.98	0.72	1.33	High-b-carotene foods
		Cancer						>= 2 vs <0.5 serv/wk
		Prevention			1.39	1.02	1.91	High-lutein foods
McCullough,	USA		435	~9	p=0.04			>= 5. vs <1.5 serv/wk
2007	USA	Study II Nutrition	455	~9	0.87	0.65	1.16	High-lycopene foods
		Cohort						>= 4.5 vs <0.8 serv/wk
		Conort			1.31	0.97	1.77	High-vitamin C foods
					P=0.03			>= 7.7 vs <1.7 serv/wk

Table 2 Studies on dietary patterns identified in the CUP

Conclusion from the Second Expert Report

A Recommended Food Score (Mai et al 2005) was applied in the Breast Cancer Detection Demonstration Project. The score included various plant foods, chicken, turkey, fish and skimmed and semi-skimmed milk and milk beverages. No association with the index was observed (RR highest vs lowest quartile =0.87; 95% CI: 0.61-1.22).

An index of concordance with the Dietary Guidelines for Americans was applied in the Iowa's Women Cohort Study (Harnack et al, 2002). The RR for the highest vs the lowest index quintile was 0.71 (95% CI: 0.52-0.96). After exclusion of the components on BMI and physical activity, the RR was 1.28 (95% CI: 0.92-1.79).

1.6 Breastfeeding

Methods

Two studies were identified, one study during the SLR 2005 for the Second Expert Report on breastfeeding and one study during the CUP on being breast-fed.

Main results

Being breastfed was not related to the risk of endometrial cancer in the Nurses' Health Study (HR _{Been breastfed vs Not}=0.91; 95% CI: 0.77-1.07; 708 cases). Compared to not having been breast fed, the hazard ratios for ≤ 3 , 4–8, and >=9 months duration of breastfed were 1.09 (0.78–1.52), 0.80 (0.59–1.09), 0.99 (0.77–1.29), respectively, of having been breastfed; *P* for trend = 0.88) (Xue et al, 2008).

Table 3 Studies on breastfeeding identified in the CUP

Author/year Country Study Cases Years of RR LCI UC	CI Contrast
name follow-up 60.91 0.77 1.0 Xue, 2008 USA Health 708 28 0.99 0.77 1.2	Yes vs no

Conclusion from the Second Expert Report

No studies were found on being breastfed and endometrial cancer risk.

Duration of breastfeeding was not significantly associated with the risk of endometrial cancer in women before and after adjusting by parity in a Norwegian follow up study. RR was 0.96 (95% CI: 0.90-1.02) per 2-month increment of average duration of lactation per pregnancy and 0.99 (95% CI: 0.92-1.07) per 6-month increment of total duration of breastfeeding (Kvale et al, 1987). The few case-control studies identified presented conflicting results.

2 Foods

2.2.1 Vegetables

Methods

Up to December 2012, two cohort studies were identified during the Continuous Update Project. No study was identified in the SLR 2005. The NIH-AARP Diet and Health Study (Kabat et al., 2010) reported vegetable intake in serving per 1000 kcal/ day which was converted to serving per day for comparability purposes. The, average energy intake (kcal/day) reported in a previous paper of the same study (George et al, 2009) was used in the conversion. The dose-response results are presented for an increment of 1 serving/day.

Main results

The summary RR for 1 serving per day was 1.05 (95% CI: 1.00 - 1.10) for the two studies combined. The summary RR for 100 g/ day intake of vegetables was 1.04 (95% CI: 1.00 - 1.08) for the two studies combined.

Only one study investigated the potential effect modification of hormone treatment. In the CPS II (McCullough et al, 2007) only among women who had never used hormone replacement therapy was the risk of endometrial cancer lower in the highest (vs. lowest) tertile of vegetable (RR = 0.80, 95% CI: 0.57-1.13; p-interaction = 0.01, p trend =0.29) but the association was not statistically significant. Among hormone treatment users , the RR in the highest vs lowest tertile was 1.38 (0.96-2.00) Ptrend=0.11 for vegetables.

Heterogeneity

There was no heterogeneity ($I^2 = 0\%$, $P_{heterogeneity} = 0.93$).

Conclusion from the Second Expert Report

No cohort study was identified during the SLR 2005. The summary estimate of 8 case-control studies per 100 g/day increase was 0.90 (95% CI: 0.86-0.95).

Published meta-analysis

A meta-analysis of 10 case-control studies conducted for the 2007 WCRF/AICR Second Expert Report found a RR of 0.71 (95% CI: 0.55-0.91) for the highest versus the lowest categories of total vegetables intake (Bandera et al, 2007). When vegetable intake was modelled as continuous variables, the summary OR was 0.90 (95% CI: 0.86-0.95) for an increment in intake of 100 g/d.

Author, year	Country	Study name	Cases	Year s of follo w up	RR	LCI	UCI	Contrast
Kabat,	USA	NIH-	1142	8	1.09	0.90	1.33	> 1.67 vs. < 0.74
2010		AARP						servings/1000
		Diet and						kcal/day
		Health			1.01	0.92	1.11	serving per 1000
		study						kcal/day
McCullough	USA	Cancer	435	9	1.21	0.89	1.65	> 2.6 vs. < 1.0
2007		Preventio						serving/day
		n			1.07	0.98	1.17	Per 1 serving/day
		Study II			1.18	0.88	1.58	> 1.9 vs. <0.8
		Nutrition						serving/1000 kcal/day
		Cohort			1.06	0.95	1.19	serving per 1000
								kcal/day

Table 4 Studies on vegetables identified in the CUP

Table 5 Overall evidence on vegetables and endometrial cancer

	Summary of evidence
SLR 2005	No cohort study was identified during the 2005 SLR
Continuous Update	Two cohort studies were identified during the CUP. The results from
Project	the two studies were included in the dose-response meta-analysis.
	None of the studies reported significant associations.

Table 6 Summary of results of the dose response meta-analysis of vegetables and endometrial cancer

Endometrial cancer incidence							
	SLR 2005*	Continuous Update Project					
Studies (n)	-	2					
Cases (n)	-	1577					
Increment unit used	-	1 serving/day					
Overall RR (95%CI)	-	1.05 (95% CI: 1.00-1.10)					
Heterogeneity (I ² ,p-value)	-	0%, p=0.93					

*No meta-analysis was conducted in the Second Expert Report

 Table 7 Inclusion/exclusion table for meta-analysis of vegetables and endometrial cancer

WCRF	Author	Year	Study	Study name	Cancer	SLR	CUP	CUP H	Estimated values	Exclusion
code			design		outcome	2005	dose-	vs. L		reason
							response	forest		
								plot		
END00214	Kabat	2010	Prospective Cohort study	NIH- AARP Diet and Health Study	Incidence	No	Yes	Yes	Serving/1000Kcal/ day Rescaled to serving/day	-
END00229	McCullough	2007	Prospective Cohort study	Cancer Prevention Study ll Nutrition Cohort	Incidence	No	Yes	Yes	Serving per day	-

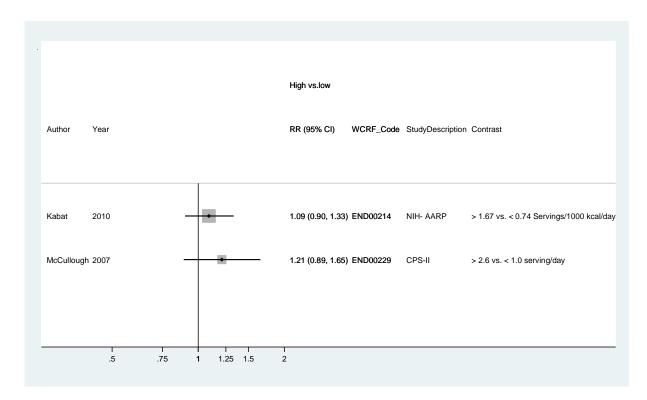
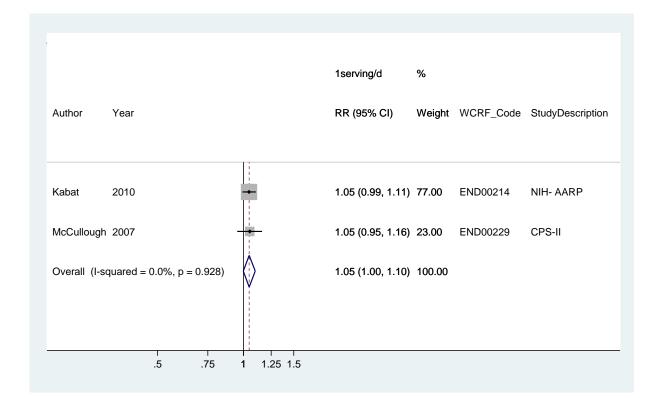
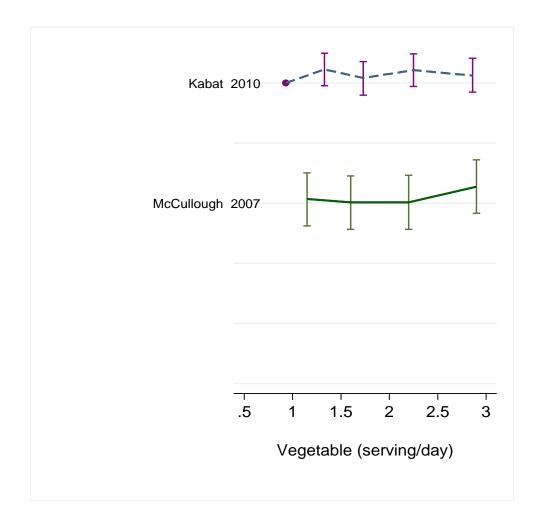




Figure 1 Highest versus lowest forest plot of vegetables and endometrial cancer

Figure 2 Dose-response meta-analysis of vegetables and endometrial cancer –per 1 serving/day

Figure 3 Dose-response graph of vegetables and endometrial cancer

2.2.2 Fruits

Methods

Up to December 2012, two cohort studies were identified during the Continuous Update Project. No study was identified during the SLR 2005. The NIH-AARP Diet and Health Study (Kabat et al., 2010) reported fruits intake in serving per 1000 kcal/ day, which was converted to serving per day for comparability purposes. The average energy intake (kcal/day) reported in a previous paper of the same study (George et al, 2009) was used in the conversion. The dose-response results are presented for an increment of 1 serving/day.

Main results

The summary RR for 1serving /day intake of total fruits was 1.07 (95% CI: 1.01-1.12) for all studies combined. The summary RR for 100g/day intake of total fruits was 1.05 (95% CI:1.01-1.10) for all studies combined.

Only one study investigated the potential effect modification of hormone treatment. In the CPS II (McCullough et al, 2007), only among women who had never used hormone replacement therapy was the risk of endometrial cancer lower in the highest (vs. lowest) tertile of fruit (RR = 0.75, 95% CI: 0.52- 1.07;p-interaction = 0.03, p trend = 0.11) but the association was not statistically significant. Among hormone treatment users , the RR in the highest vs lowest tertile of fruits was 1.41 (0.99- 2.02), Ptrend=0.08 for fruits.

Heterogeneity

There was no heterogeneity across the limited number of published studies ($I^2 = 0\%$, $P_{heterogeneity} = 0.72$.

Conclusion from the Second Expert Report

No cohort study was identified during the SLR 2005. The summary odds ratio of 14 casecontrol studies was 0.97 (95% CI 0.92-1.02) for an intake increment of 100 g/d.

Published meta-analysis

A meta-analysis of 14 case-control studies conducted for the Second Expert Report found a RR of 0.90 (95% CI 0.72-1.12) for the highest versus lowest categories of total fruits intake (Bandera et al., 2007). When fruit intake was modelled as continuous variables, the summary OR was 0.97 (95% CI 0.92-1.02) for an intake increment of 100 g/d.

Table 8 Studies on fruits identified in the CUP

Author, year	Cou ntry	Study name	Cases	Years of follow up	RR	LCI	UCI	Contrast
Kabat,	USA	NIH- AARP	1142	8	1.30	1.04	1.61	> 1.91 vs. <0.61
2010		Diet and						serving/1000Kcal/day
		Health Study						
					1.07	0.99	1.15	serving/1000Kcal/day
McCullough,	USA	Cancer	435	9	1.24	0.90	1.70	>2.7 vs. <0.9 serving/day
2007		Prevention						
		Study ll			1.09	1.0	1.19	Per 1 serving/day
		Nutrition						
		Cohort						

Table 9 Overall evidence on fruits and endometrial cancer

	Summary of evidence
SLR 2005	No cohort study was identified during the 2005 SLR
Continuous	Two cohort studies were identified during the CUP and included in the
Update Project	dose-response meta-analysis. A weak protective association was
	observed in one of the studies

Table 10 Summary of results of the dose response meta-analysis of fruits and endometrial cancer

Endometrial cancer incidence								
	SLR 2005*	Continuous Update Project						
Studies (n)	-	2						
Cases (n)	-	1577						
Increment unit used	-	1 serving/day						
Overall RR (95%CI)	-	1.07 (95% CI: 1.01-1.12)						
Heterogeneity (I ² ,p-value)	-	0%, p=0.72						

*No meta-analysis was conducted in the Second Expert Report

WCRF	Author	Year	Study	Study name	Cancer	SLR	CUP	CUP H	Estimated values	Exclusion
code			design		outcome	2005	dose-	vs. L		reason
							response	forest plot		
END00214	Kabat	2010	Prospective	NIH- AARP	Incidence				Serving/1000/Kcal/day	-
			Cohort	Diet and		No	Yes	Yes	rescaled to serving per	
			study	Health Study					day	
END00229	McCullough	2007	Prospective	Cancer	Incidence	No	Yes	Yes		-
			Cohort	Prevention					Serving per day	
			study	Study 11						
				Nutrition						
				Cohort						

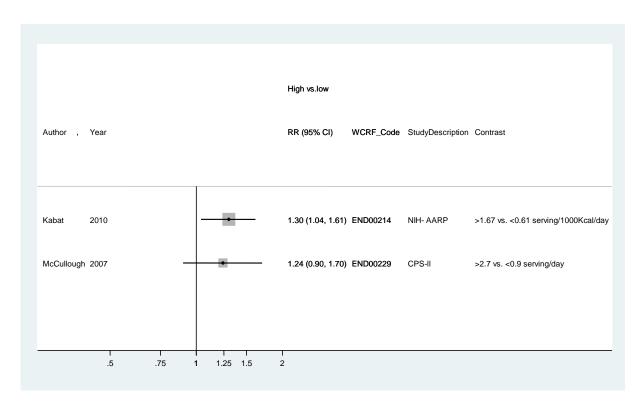
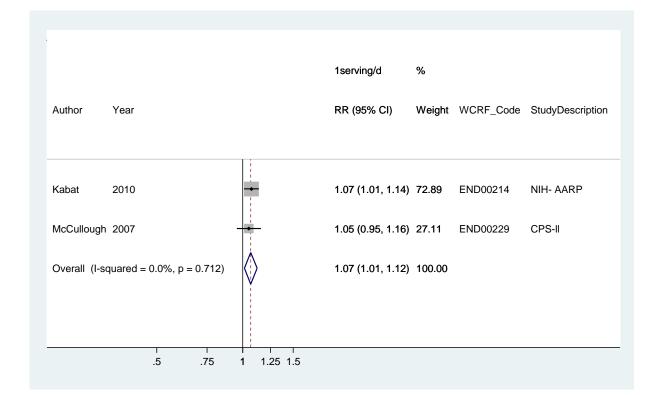
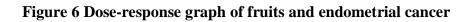
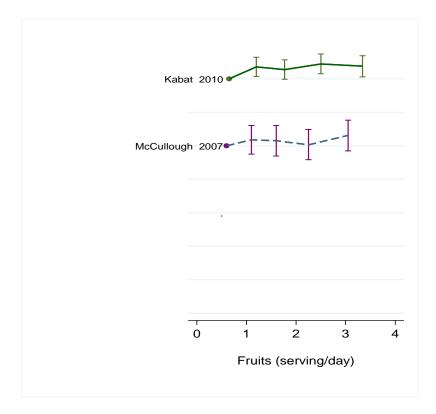





Figure 4 Highest versus lowest forest plot of fruits and endometrial cancer

Figure 5 Dose-response meta-analysis of fruits and endometrial cancer -per 1 serving/day

2.5.1.2 Processed meat

Methods

Up to December 2012, reports from four cohort studies were identified, three of which were identified during the CUP. The CUP meta-analysis included the three studies identified during the CUP.

The dose-response results are presented for an increment of 50 grams per day (the highest category of intake in one study was >23.53 g/day).

Main results

The summary RR per 50 grams per day was 1.24 (95% CI: 0.80-1.93; $I^2 = 16.0\%$, $P_{heterogeneity}=0.30$). The excluded study (Zheng et al, 1995) reported a RR estimate for the highest versus the lowest intake category of processed meat/fish of 1.5 (p \leq 0.05). None of the studies examined effect modification by hormone use or BMI.

Heterogeneity

There was evidence of low heterogeneity across the limited number of published studies ($I^2=16\%$, p=0.30). There was no evidence of publication bias with Egger's test, p=0.94

Conclusion from the Second Expert Report

Only one study was identified during the SLR 2005 (Zheng et al, 1995), reporting a positive association between processed meat intake and endometrial cancer (RR=1.5, confidence intervals not available).

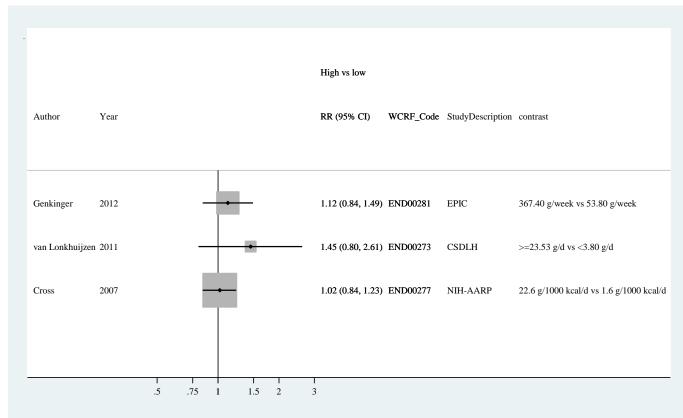
Table 12 Studies on processed meat of	consumption identified in the CUP
---------------------------------------	-----------------------------------

Author, year	Country	Study name	Cases	Years of follow up	RR	LCI	UCI	Contrast
Genkinger, 2012	Sweden	Swedish Mammography Cohort	720	21	1.12	0.84	1.49	367.40 g/week vs 53.80 g/week
van Lonkhuijzen, 2011	Canada	Canadian Study of Diet, Lifestyle, and Health Cohort	107	11	1.45	0.80	2.61	>=23.53 g/d vs <3.80 g/d
Cross, 2007	USA	The National Institutes of Health- American Association for Retired Persons	1185	8.2	1.02	0.84	1.23	22.6 g/1000 kcal/d vs 1.6 g/1000 kcal/d

Table 13 Overall evidence on processed meat consumption and endometrial cancer

	Summary of evidence			
SLR 2005	One cohort study, the Iowa Women's Health Study reported a			
	positive association between processed meat intake and endometrial			
	cancer.			
Continuous Update	Three additional cohort studies were identified and included in the			
Project	dose-response meta-analysis. None of them reported significant			
	results.			

Table 14 Summary of results of the dose response meta-analysis of processed meat consumption and endometrial cancer


	Endometrial cancer	
	SLR 2005*	Continuous Update Project
Studies (n)	-	3
Cases (n)	-	2012
Increment unit used	-	Per 50 g/day
Overall RR (95%CI)	-	1.24 (0.80-1.93)
Heterogeneity (I ² ,p-value)	-	16.0%, p=0.30

*No meta-analysis was conducted in the Second Expert Report

 Table 15 Inclusion/exclusion table for meta-analysis of processed meat consumption and endometrial cancer

WCRF_ Code	Author	Year	Study Design	Study Name	Cancer Outcome	SLR 2005	CUP dose- response meta- analysis	CUP HvL forest plot	Estimated values	Exclusion reasons
END00278	Genkinger	2012	Prospective Cohort study	Swedish Mammography Cohort	Incidence	No	Yes	Yes	Recalculate continuous values	
END00273	van Lonkhuijzen	2011	Case-cohort study	Canadian Study of Diet, Lifestyle, and Health Cohort	Incidence	No	Yes	Yes	Mid-exposure values	
END00277	Cross	2007	Prospective Cohort study	The National Institutes of Health- American Association for Retired Persons	Incidence	No	Yes	Yes	Person years	
END00015	Zheng	1995	Prospective Cohort study	Iowa Women's Health Study	Incidence	Yes	No	No	-	No exposure quantities and confidence limits

Figure 7 Highest versus lowest forest plot of processed meat consumption and endometrial cancer

Figure 8 Dose-response meta-analysis of processed meat and endometrial cancer - per 50 g/day

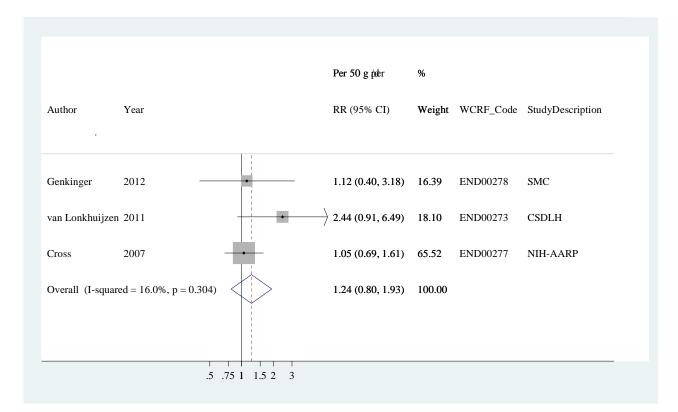
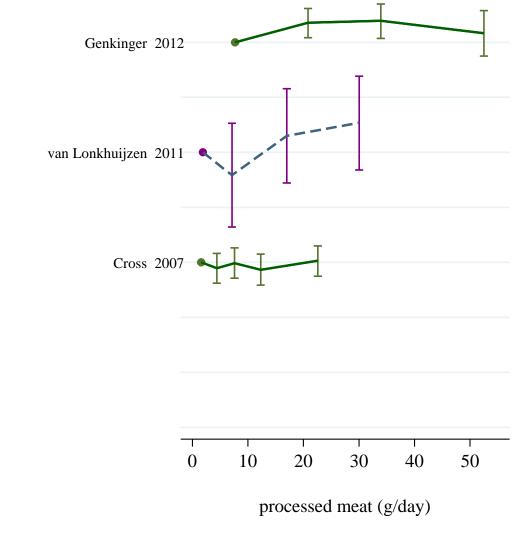



Figure 9 Dose-response graph of processed meat and endometrial cancer

2.5.1.3 Red meat

Methods

Up to December 2012, reports from five cohort studies were identified, four of which were identified during the CUP. The CUP meta-analysis included the four studies identified during the CUP. The dose-response results are presented for an increment of 50 grams per day (the highest category of intake in one study was >52.15 g/day).

Main results

The summary RR per 50 grams per day was 0.99 (95% CI: 0.83-1.17; $I^2 = 61.8\%$, $P_{heterogeneity}=0.049$). The excluded study (Zheng et al, 1995) reported no association between red meat intake and endometrial cancer risk.

Heterogeneity

There was evidence of high heterogeneity across the limited number of published studies ($I^2=61.8\%$, p=0.049). There was borderline evidence of publication bias with Egger's test, p=0.054

Conclusion from the Second Expert Report

One cohort study was identified during the SLR 2005, with no association between red meat consumption and endometrial cancer. The summary odds ratio per 50 g/day of red meat consumption of six case-control studies was 1.21 (95% CI: 1.04-1.41; p value: 0.06).

Published meta-analysis

A meta-analysis of seven case-control studies showed a RR of 1.51 (95% CI: 1.19-1.93; I^2 =44%, p=0.097) per 100 g/day of red meat consumption (Bandera et al., 2007).

Author, year	Country	Study name	Cases	Years of follow up	RR	LCI	UCI	Contrast
Genkinger, 2012	Sweden	Swedish Mammograp hy Cohort	720	21	1.06	0.68	1.66	714.07 g/week vs 40.60 g/week
van Lonkhuijze, 2011	Canada	Canadian Study of Diet, Lifestyle, and Health Cohort	107	11	1.62	0.86	3.08	>=52.15 g/d vs <22.09 g/d
Kabat, 2008	Canada	Canadian National Breast Cancer Screening Study	426	16.4	0.86	0.61	1.22	>108.99 g/d vs <48.49 g/d
Cross, 2007	USA	The National Institutes of Health- American Association for Retired Persons	1185	8.2	0.75	0.62	0.91	62.7 g/1000 kcal/d vs 9.8 g/1000 kcal/d

Table 16 Studies on red meat consumption identified in the CUP

Table 17 Overall evidence on red meat consumption and endometrial cancer

	Summary of evidence
SLR 2005	One cohort study was identified during the SLR 2005, the Iowa
	Women's Health Study. This study reported no association with red
	meat intake and endometrial cancer.
Continuous Update	Four additional cohort studies were identified and included in the
Project	dose-response meta-analysis. Only one of them reported significant
	protective results

Table 18 Summary of results of the dose response meta-analysis of red meat consumption and endometrial cancer

	Endometrial cancer	
	SLR 2005*	Continuous Update Project
Studies (n)	-	4
Cases (n)	-	2438
Increment unit used	-	Per 50 g/day
Overall RR (95%CI)	-	0.99 (0.83-1.17)
Heterogeneity (I ² ,p-value)	-	61.8%, p=0.049

*No meta-analysis was conducted in the Second Expert Report

 Table 19 Inclusion/exclusion table for meta-analysis of red meat consumption and endometrial cancer

WCRF_ Code	Author	Year	Study Design	Study Name	Cancer Outcome	SLR 2005	CUP dose- response meta- analysis	CUP HvL forest plot	Estimated values	Exclusion reasons
END00278	Genkinger	2012	Prospective Cohort study	Swedish Mammography Cohort	Incidence	No	Yes	Yes	Recalculate continuous values	
END00273	van Lonkhuijzen	2011	Case-cohort study	Canadian Study of Diet, Lifestyle, and Health Cohort	Incidence	No	Yes	Yes	Mid-exposure values	
END00223	Kabat	2008	Prospective Cohort study	Canadian National Breast Cancer Screening Study	Incidence	No	Yes	Yes	Person years and mid-exposure values	
END00277	Cross	2007	Prospective Cohort study	The National Institutes of Health- American Association for Retired Persons	Incidence	No	Yes	Yes	Person years	
END00015	Zheng	1995	Prospective Cohort study	Iowa Women's Health Study	Incidence	Yes	No	No	-	No exposure quantities and confidence limits

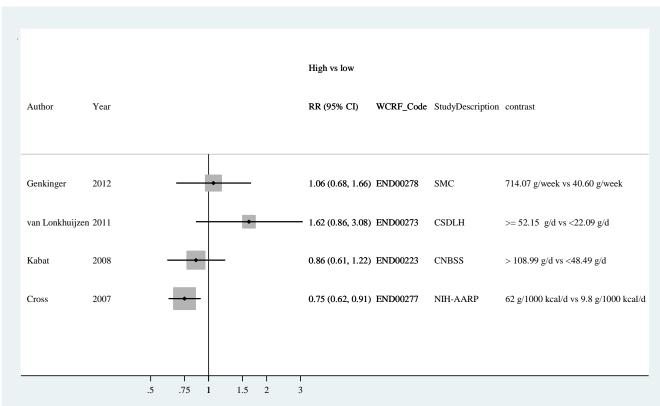
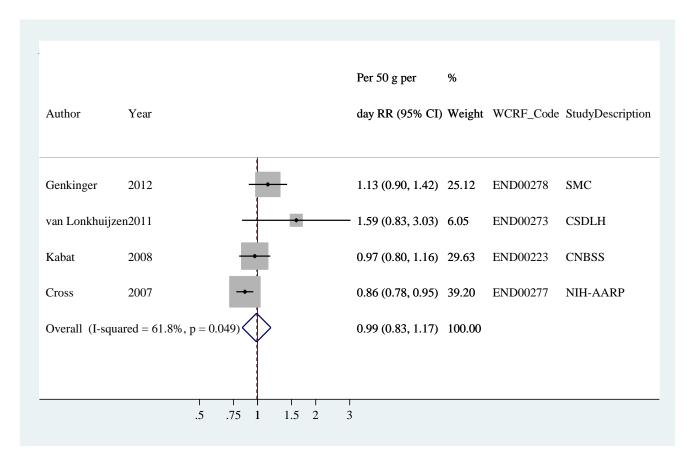



Figure 10 Highest versus lowest forest plot of red meat consumption and endometrial cancer

Figure 11 Dose-response meta-analysis of red meat and endometrial cancer - per 50 g/day

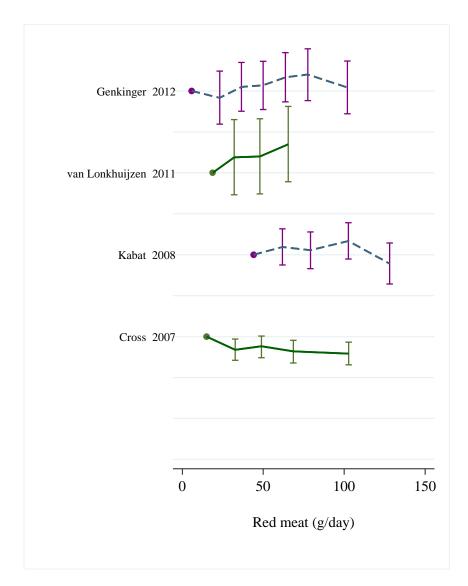


Figure 12 Dose-response graph of red meat and endometrial cancer

3 Beverages

3.6.1 Coffee

Methods

A total of 8 cohort studies have been published on coffee and endometrial cancer risk up to 2012, six of which were published after the Second Expert Report. Dose-response analyses were conducted for an increase of 1 cup per day.

Main results

The summary RR per 1 cup of coffee per day was 0.93 (95% CI: 0.91-0.96, $I^2=10\%$, $p_{heterogeneity}=0.35$, n=7). There was no evidence of publication bias with Egger's test, p=0.39.

Two studies explored the effect modification by postmenopausal hormone use. In the NIH-AARP (Gunter et al, 2011), the relation of coffee with endometrial cancer incidence varied significantly by hormone use ($p_{interaction} = 0.03$) with an association only apparent among never users (Hazard ratio comparing drinking >3 cups/day versus none = 0.54; 95% CI, 0.41–0.72; Ptrend = 0.0005). In the NHS (Je et al, 2011), the inverse associations with 4 or more cups of coffee seemed stronger among postmenopausal women (RR =0.74; 95% CI = 0.55–1.00; Ptrend = 0.04) and those without current hormone use (RR = 0.69; 95% CI = 0.48–1.00; Ptrend =0.03), but no significant interactions between these variables and coffee intake were observed.

Three studies investigating effect modification by body fatness support that the potential protective effect of coffee on endometrial cancer risk is more evident in overweight and obese women. In the NIH-AARP (Gunter et al, 2011) the relation of coffee with endometrial cancer incidence was only observed in women with BMI>25 kg/m2. In the NHS (Je et al, 2011), the inverse associations with 4 or more cups of coffee seemed stronger among obese women (BMI > 30 kg/m2; RR = 0.62; 95% CI: 0.38–1.01; Ptrend = 0.02), but no significant interaction was observed. In the SMC (Frieberg et al, 2009), the association with coffee seemed largely confined to overweight and obese women, who showed a respective risk reduction of 12% (95% CI 0–23%) and 20% (95% CI 7–31%) for every cup of coffee, but was not observed among normal weight women ($p_{interaction} < 0.001$).

Heterogeneity

There was low evidence of heterogeneity, $I^2=9.9\%$, $p_{heterogeneity}=0.35$. Visual inspection of the funnel plot suggests that a small study (Shimazu et al, 2008) reported an inverse association much stronger than the association reported by other studies.

Published meta-analyses

In a meta-analysis of two cohort studies and seven case-control studies, the relative risk estimates of different coffee consumption categories compared to non coffee drinkers were 0.80 (95% CI: 0.68-0.94) for coffee drinkers; 0.87 (95% CI: 0.78-0.97) for low-to-moderate drinkers and 0.64 (95% CI: 0.48-0.86) for heavy coffee drinkers (Bravi et al, 2009). When restricted to the two cohort studies, the respective summary RRs were 0.86 (95% CI: 0.51-1.45), 0.96 (95% CI: 0.54-1.68) and 0.55 (95% CI: 0.30-1.02).

The summary RR for an increment of one cup per day was 0.93 (95%: 0.89-0.97) for all studies combined and 0.97 (95% CI: 0.89-1.04) when restricted to the two cohort studies.

Another meta-analysis of four cohort studies found a summary RR of 0.74 (95% CI: 0.63-0.84) for high vs. low coffee consumption (Yu et al, 2011).

A more recent meta-analysis of six cohort studies and ten case-control studies reported a summary RR of 0.71 (95% CI: 0.62-0.81) for high vs. low consumption for all studies combined and 0.70 (95% CI: 0.62-0.81) for cohort studies (Je & Giovannucci, 2012). The summary RR per one cup per day among cohort studies was 0.94 (95% CI: 0.90-0.97).

Conclusion from the Second Expert Report

In the SLR of the 2007 Expert Report the evidence relating coffee to endometrial cancer risk was limited and no conclusion was possible. The summary odds ratio of the highest vs lowest intake of five case-control studies was 0.85 (95% CI: 0.63-1.14)

Author/year	Country	Study name	Cases	Years of follow- up	RR	LCI	UCI	Contrast
Giri, 2011	USA	Women's Health Initiative Observational Study	427	~7.5	0.86	0.63	1.18	≥4 vs. ≤1 or 0 cups/day
Gunter, 2012	USA	NIH-AARP Diet and Health Study	1486	9.3	0.64 0.94	0.41 0.90	0.80 0.97	>3 vs. 0 cups/day Per 1 cup/day
Je, 2011	USA	Nurses' Health Study	672	26	0.75	0.57	0.97	\geq 4 vs. <1 cups/day
Nilsson, 2010	Sweden	Vasterbotten Intervention Program	108	15	0.88	0.44	1.78	\geq 4 vs. <1 times/day
Friberg, 2009	Sweden	Swedish Mammography Cohort	677	17.6	0.75 0.90	0.58 0.83	0.97 0.97	≥4 vs. ≤1 cups/day Per 1 cup/day
Shimazu, 2008	Japan	Japan Public Health Centre- based Prospective study	117	15	0.38	0.16	0.91	≥3 cups/d vs. ≤2/wk

Table 20 Studies on coffee identified in the CUP

Table 21 Overall evidence on coffee and endometrial cancer

	Summary of evidence
SLR 2005	One cohort study was identified in the SLR. Another study published before 2007 was identified in the CUP Both studies showed non- significant inverse associations between coffee intake and endometrial cancer risk.
Continuous Update Project	Six additional studies reported on coffee and endometrial cancer risk. All RRs were below 1, and four of the studies showed significant inverse associations.


Table 22 Summary of results of the dose-response meta-analysis of coffee and endometrial cancer

Endometrial cancer							
	SLR 2005*	Continuous Update Project					
Studies (n)	-	7					
Cases (n)	-	3571					
RR (95% CI)	-	0.93 (0.91-0.96)					
Quantity	-	Per 1 cup/d					
Heterogeneity (I ² , p-value)	-	9.9%, p=0.36					

* No meta-analysis was conducted in the Second Expert Report

WCRF code	Author	Year	Study design	Study name	Cancer	SLR	CU dose-	CU H	Estimated	Exclusion reason
					outcome	2005	response	vs. L forest plot	values	
END00257	Giri	2011	Prospective cohort study	Women's Health Initiative – Observational Study	Incidence	No	Yes	Yes	Midpoints	
END00258	Gunter	2012	Prospective cohort study	NIH-AARP Diet and Health Study	Incidence	No	Yes	Yes	Midpoints, person-years	
END00256	Je	2011	Prospective cohort study	Nurses' Health Study	Incidence	No	Yes	Yes	Midpoints	
END00279	Nilsson	2010	Prospective cohort study	Vasterbotten Intervention Project	Incidence	No	Yes	Yes	Midpoints, person-years	
END00221	Friberg	2009	Prospective cohort study	Swedish Mammography Cohort	Incidence	No	Yes	Yes	Midpoints	
END00207	Shimazu	2008	Prospective cohort study	Japan Public Health Centre- based Cohort study	Incidence	No	Yes	Yes	Midpoints	
END00280	Stensvold	1994	Prospective cohort study	Norwegian Health Screening Service	Incidence	No*	Yes	Yes	Midpoints	
END00178	Jacobsen	1986	Prospective cohort study		Incidence	Yes	No	Yes		Only high vs. low comparison

Table 23 Inclusion/exclusion table for meta-analysis of coffee and endometrial cancer

Figure 13 Highest versus lowest forest plot of coffee and endometrial cancer

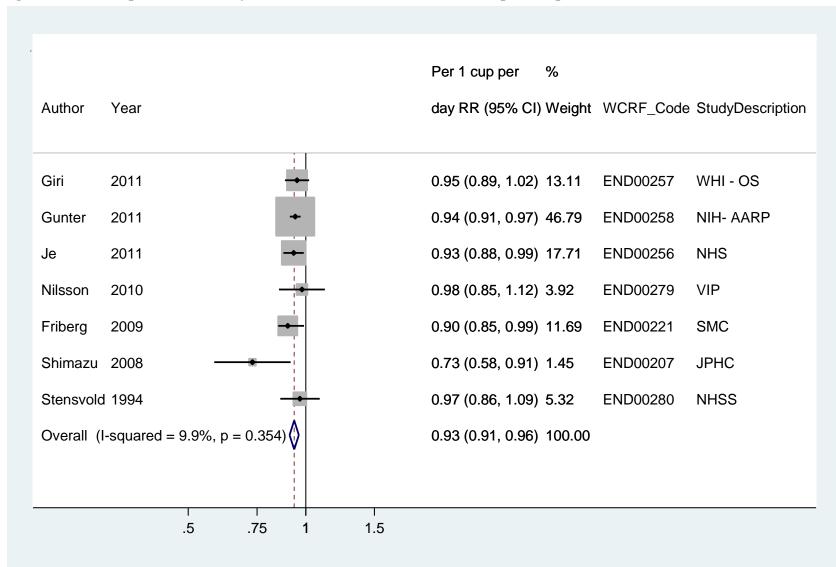


Figure 14 Dose-response meta-analysis of coffee and endometrial cancer, per 1 cup/d

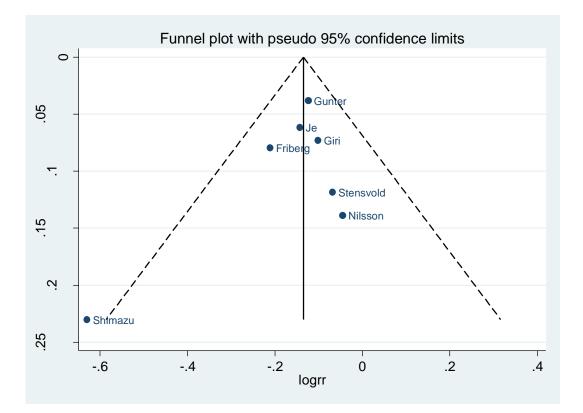


Figure 15 Funnel plot of coffee and endometrial cancer

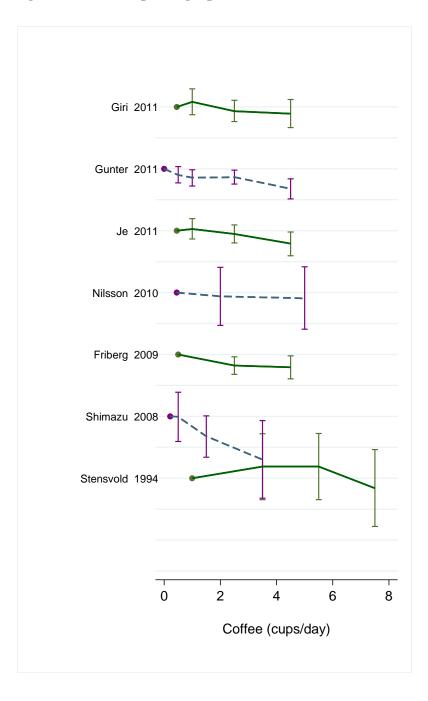


Figure 16 Dose-response graph of coffee and endometrial cancer

3.6.1.1 Decaffeinated coffee

Methods

A total of 3 cohort studies have been published on decaffeinated coffee and endometrial cancer risk up to 2012, all of which were identified in the CUP. Dose-response analysis was conducted per 1 cup per day.

Main results

The summary RR per 1 cup of decaffeinated coffee per day was 0.92 (95% CI: 0.87-0.97, $I^2=0\%$, $p_{heterogeneity}=0.81$, n=3). There was no evidence of publication bias with Egger's test, p=0.40.

Heterogeneity

There was no heterogeneity, $I^2=0\%$, $p_{heterogeneity}=0.81$.

Published meta-analyses

None of the three meta-analyses on coffee intake and endometrial cancer risk conducted analyses for decaffeinated coffee (Bravi et al, 2009, Yu et al, 2011, and Je & Giovannucci, 2012).

Conclusion from the Second Expert Report

No prospective study was identified

Table 24 Studies on decaffeinated coffee identified in the CUP

Author/year	Country	Study name	Cases	Years of follow-	RR	LCI	UCI	Contrast
Giri, 2011	USA	Women's Health Initiative Observational Study	427	up ~7.5	0.51	0.25	1.03	≥4 vs. ≤1 or 0 cups/day
Gunter, 2012	USA	NIH-AARP Diet and Health Study	1486	9.3	0.81 0.93	0.54 0.87	1.20 0.99	>3 vs. 0 cups/day Per 1 cup/day
Je, 2011	USA	Nurses' Health Study	672	26	0.78	0.57	1.08	$\geq 2 \text{ cups/d vs.}$ <1 cup/mo

Table 25 Overall evidence on decaffeinated coffee and endometrial cancer

	Summary of evidence
SLR 2005	No cohort studies reported on decaffeinated coffee and endometrial
	cancer.
Continuous	Three cohort studies reported on decaffeinated coffee and endometrial
Update Project	cancer and all of these showed non-significant inverse associations.

Table 26 Summary of results of the dose-response meta-analysis of decaffeinated coffee and endometrial cancer

	Endometrial cancer										
	SLR 2005*	Continuous Update Project									
Studies (n)	-	3									
Cases (n)	-	2585									
RR (95% CI)	-	0.92 (0.87-0.97)									
Quantity	-	Per 1 cup/d									
Heterogeneity (I ² , p-value)	-	0%, p=0.81									

 Heterogeneity (1², p-value)

 No meta-analysis was conducted in the Second Expert Report

WCRF code	Author	Year	Study design	Study name	Cancer outcome	SLR 2005	CU dose- response	CU H vs. L forest plot	Estimated values	Exclusion reason
END00257	Giri	2011	Prospective cohort study	Women's Health Initiative – Observational Study	Incidence	No	Yes	Yes	Midpoints	
END00258	Gunter	2012	Prospective cohort study	NIH-AARP Diet and Health Study	Incidence	No	Yes	Yes	Midpoints, person-years	
END00256	Je	2011	Prospective cohort study	Nurses' Health Study	Incidence	No	Yes	Yes	Midpoints	

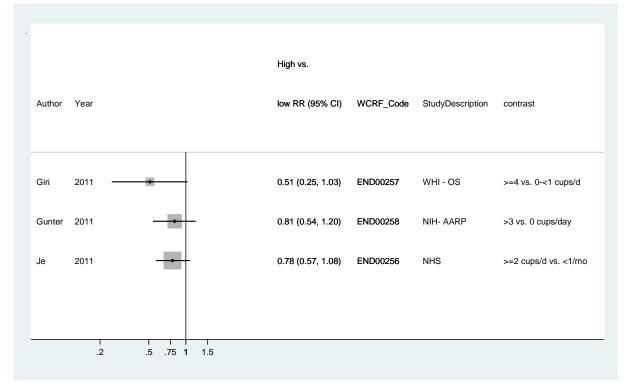


Figure 17 Highest versus lowest forest plot of decaffeinated coffee and endometrial cancer

Figure 18 Dose-response meta-analysis of decaffeinated coffee and endometrial cancer, per 1 cup/d

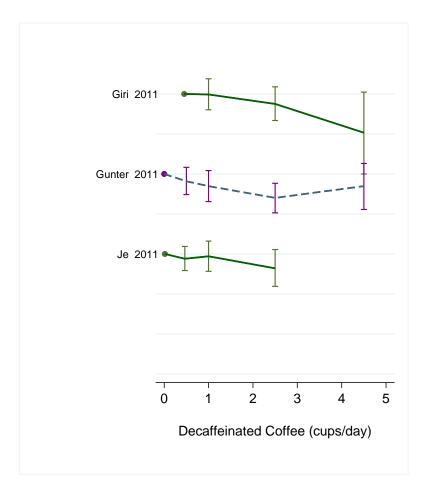


Figure 19 Dose-response graph of decaffeinated coffee and endometrial cancer

3.6.2 Tea

Methods

Up to December 2012, reports from three cohort studies were identified, two of which were identified during the CUP.

One study showing a non-significant inverse association could not be included in the doseresponse meta-analysis because only reported highest vs lowest comparison. One additional Japanese study investigated green tea in relation to endometrial cancer and was not included in the meta-analysis (Shimazu et al, 2008). No association was reported in this study (RR $_{>5 cups/day}$ vs <4 cups/week=0.75; 95% CI; 0.44-1.30).

Main results

The summary RR per 1 cup/day was 1.03 (95% CI: 0.89-1.21).

Heterogeneity

There was no evidence of heterogeneity across the limited number of published studies ($I^2=0\%$, $P_{heterogeneity}=0.76$).

Published meta-analyses

A meta-analysis of seven studies (two prospective and five case-control studies) (Tang et al. 2009), showed a summary RR for an increase of 2 cups/day of 0.90 (95% CI: 0.77-1.05) from two cohort studies and 0.66 (95% CI: 0.69-0.87) for four case-control studies. In a recent meta-analysis of four case-control studies and endometrial cancer, the summary relative risk for the highest vs lowest intake was 0.78 (95% CI: 0.62, 0.98) (Butler et al. 2011).

Conclusion from the Second Expert Report

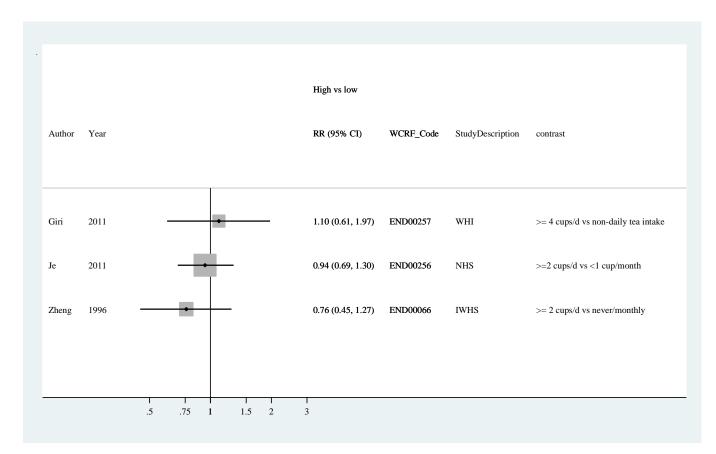
One study was identified during the SLR 2005 and showed no association between tea consumption and endometrial cancer.

Author, year	Country	Study name	Cases	Years of follow up	RR	LCI	UCI	Contrast
Giri, 2011	USA	Women's Health Initiative	427	7.5	1.10	0.61	1.97	>= 4 cups/d vs non-daily tea intake
Je, 2011	USA	Nurses' Health Study	672	26	0.94	0.69	1.30	>=2 cups/d vs <1 cup/month

Table 28 Studies on tea consumption identified in the CUP

Table 29 Overall evidence on tea consumption and endometrial cancer

	Summary of evidence
SLR 2005	One study was identified during the SLR 2005, the Iowa Women's
	Health Study .This study reported no association (RR: 0.76, p for
	trend: 0.47) between tea intake and endometrial cancer
Continuous Update	Two additional cohort studies were identified and included in the
Project	dose-response meta-analysis. No significant association was reported
	in any of them.


Table 30 Summary of results of the dose response meta-analysis of tea consumption and endometrial cancer

	Endometrial cancer	
	SLR 2005*	Continuous Update Project
Studies (n)	-	2
Cases (n)	-	921
Increment unit used	-	Per 1 cup/day
Overall RR (95%CI)	-	1.03 (0.89-1.21)
Heterogeneity (I ² ,p-value)	-	0%, p=0.76

*No meta-analysis was conducted in the Second Expert Report

WCRF_ Code	Author	Year	Study Design	Study Name	Cancer Outcome	SLR 2005	CUP dose- response meta- analysis	CUP HvL forest plot	Estimated values	Exclusion reasons
END00257	Giri	2011	Prospective Cohort study	Women's Health Initiative	Incidence	No	No	Yes		Two categories of exposure.
END00256	Je	2011	Prospective Cohort study	Nurses' Health Study	Incidence	No	Yes	Yes	Mid-exposure values	
END00066	Zheng	1996	Prospective Cohort study	Iowa Women's Health Study	Incidence	Yes	Yes	Yes	Person years per category and mid- exposure values	

 Table 31 Inclusion/exclusion table for meta-analysis of tea consumption and endometrial cancer

Figure 20 Highest versus lowest forest plot of tea consumption and endometrial cancer

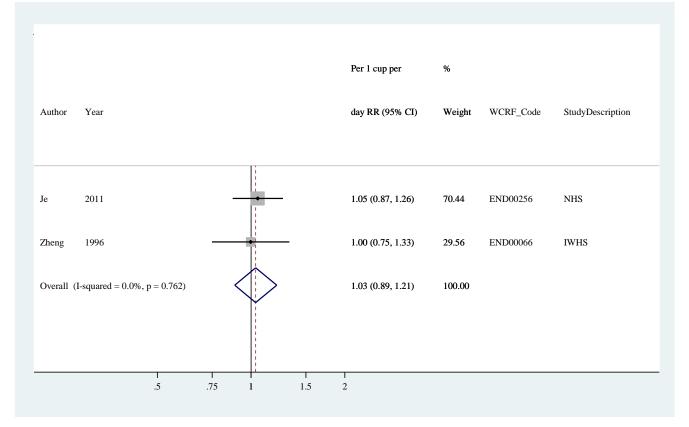


Figure 21 Dose-response meta-analysis of tea and endometrial cancer - per 1 cup/day

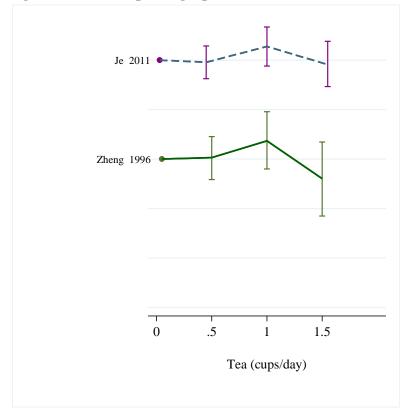


Figure 22 Dose-response graph of tea and endometrial cancer

4 Food production, preservation, processing and preparation

4.4.2 Acrylamide

Methods

A total of 3 cohort studies have been published on dietary acrylamide and endometrial cancer risk up to 2012, all of which were identified in the CUP. Dose-response analyses were conducted per 10 μ g/day.

Main results

The summary RR per 10 μ g/day of acrylamide was 1.07 (95% CI: 0.94-1.21, I²=45.5%, p_{heterogeneity}=0.16, n=3). There was no evidence of publication bias with Egger's test, p=0.40.

Heterogeneity

There was moderate heterogeneity, $I^2=45.5\%$, $p_{heterogeneity}=0.16$.

Published meta-analyses

A previous meta-analysis of two cohort studies showed a summary RR of 1.03 (95% CI: 0.80-1.33) for high vs. low intake and 1.01 (0.96-1.07) per 10 µg/day (Pellucci et al, 2011).

Conclusion from the Second Expert Report

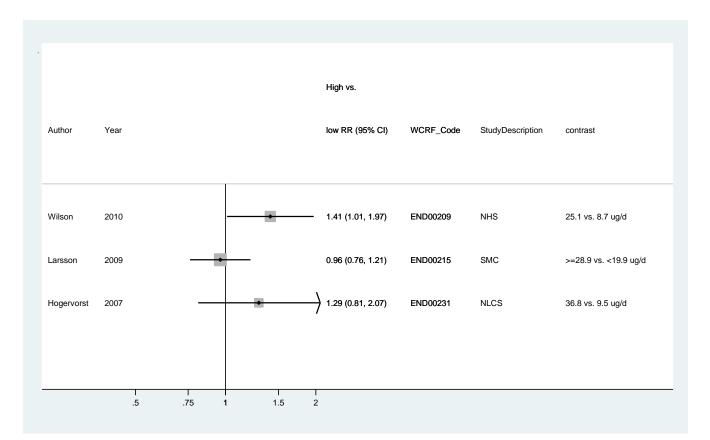
No studies were identified during the SLR 2005.

Table 32 Studies on	acrylamide identified in the CUP
---------------------	----------------------------------

Author/year	Country	Study name	Cases	Years	RR	LCI	UCI	Contrast
				of follow-				
				up				
Wilson, 2010	USA	Nurses' Health	484	26	1.41	1.01	1.97	25.1 vs. 8.7 µg/d,
		Study			1.43	0.90	2.28	all
								25.1 vs. 8.7 µg/d,
								never smokers
Larsson, 2009	Sweden	Swedish	687	17.7	0.96	0.76	1.21	32.5 vs. 16.9
		Mammography						µg/d, long-term
		Cohort study			1.20	0.76	1.90	intake
								≥29.2 vs. <20.5
								µg/d, never
								smokers, 10-year
								follow-up
Hogervorst,	Netherlands	Netherlands	327	11.3	1.29	0.81	2.07	36.8 vs. 9.5 µg/d,
2007		Cohort study			1.04	0.91	1.19	all
					1.99	1.12	3.52	Per 10 µg/d
								36.8 vs. 9.5 µg/d,
					1.12	0.95	1.33	never smokers
								Per 10 µg/d,
								never smokers

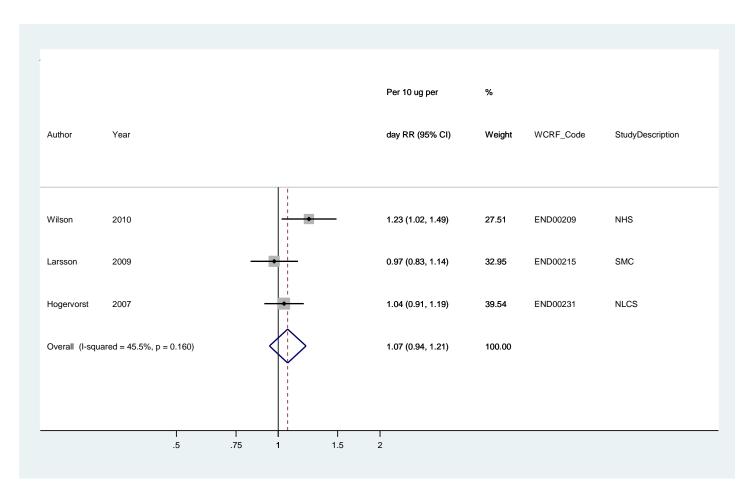
Table 33 Overall evidence on acrylamide and endometrial cancer

	Summary of evidence
SLR 2005	No cohort studies reported on acrylamide and endometrial cancer.
Continuous	Three cohort studies reported on acrylamide and endometrial cancer and
Update Project	one showed a significant positive association, while the other two showed
	no significant association; one of these showed a significant positive
	association in never smokers.


Table 34 Summary of results of the dose-response meta-analysis of acrylamide and endometrial cancer

Endometrial cancer							
	SLR 2005*	Continuous Update Project					
Studies (n)	-	3					
Cases (n)	-	1498					
RR (95% CI)	-	1.07 (0.94-1.21)					
Quantity	-	Per 10 µg/day					
Heterogeneity (I ² , p-value)	_	45.5%, p=0.16					

No meta-analysis was conducted in the Second Expert Report


Table 35 Inclusion/exclusion	table for meta-analysis	s of acrylamide and	endometrial cancer
		, <u> </u>	

WCRF code	Author	Year	Study design	Study name	Cancer outcome	SLR 2005	CU dose- response	CU H vs. L forest plot	Estimated values	Exclusion reason
END00209	Wilson	2010	Prospective cohort	Nurses' Health Study	Incidence	No	Yes	Yes	-	
END00215	Larsson	2009	Prospective cohort	Swedish Mammography Cohort	Incidence	No	Yes	Yes	-	
END00231	Hogervorst	2007	Case cohort	Netherlands Cohort Study	Incidence	No	Yes	Yes	-	

Figure 23 Highest versus lowest forest plot of acrylamide and endometrial cancer

Figure 24 Dose-response meta-analysis of acrylamide and endometrial cancer, per 10 $\mu g/d$

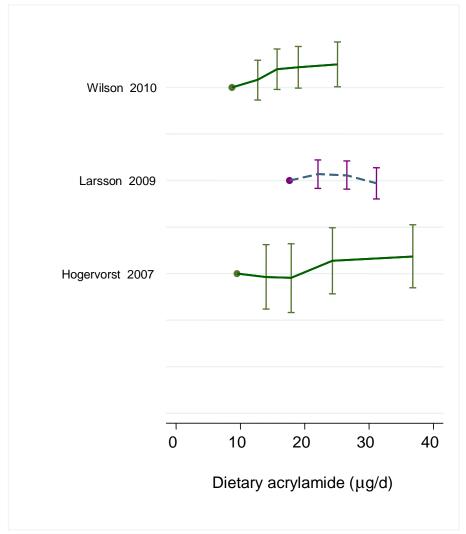


Figure 25 Dose-response graph of acrylamide and endometrial cancer

5 Dietary constituents

5.1 Carbohydrate

Methods

A total of 5 cohort studies (6 publications) have been published on carbohydrate intake and endometrial cancer risk up to 2012, three of which were identified in the CUP. Dose-response analyses were conducted per 100 g/day. For one study (Zheng et al, 1995) that reported carbohydrate intake in percentage of energy intake, we converted the results to gram per day using the median energy intake and 4 kcal/gram carbohydrate as conversion factors.

Main results

The summary RR per 100 g/day of carbohydrate intake was 1.18 (95% CI: 1.02-1.37, $I^2=0\%$, p_{heterogeneity}=0.67, n=5). There was no evidence of publication bias with Egger's test, p=0.73.

All studies considered energy intake and BMI as potential confounders except Zheng et al, 1995 (IWHS) that adjusted for energy intake but not for BMI.

Studies that examined the association by menopausal status produced discordant results. In the NHS (Cui et al, 2011) a positive association with carbohydrate intake was observed among premenopausal women (top vs. bottom quintile RR = 2.87, 95% CI = 1.38-6.08) but not among postmenopausal women, although the test for heterogeneity was not significant (p heterogeneity=0.94).

The test of heterogeneity was not significant also in EPIC (Cust et al, 2007), but contrary to the findings in the NHS, the risk estimates were significant among postmenopausal women but not among premenopausal women. Among postmenopausal women, the associations between total carbohydrates and endometrial cancer risk were significant only in never users of hormone therapy (p heterogeneity = 0.04). When stratified by body mass index subgroups, the calibrated continuous models suggested a possibly stronger association among normal-weight women, but this finding was not reflected in the quartile risk estimates

Heterogeneity

There was no evidence of heterogeneity, $I^2=0\%$, $p_{heterogeneity}=0.67$.

Conclusion from the Second Expert Report

In the SLR of the 2007 Expert Report the evidence relating carbohydrate to endometrial cancer risk was limited and no conclusion was possible.

Author/year		Study name	Cases	Years of follow- up	RR	LCI	UCI	Contrast
Cui, 2011	USA	Nurses' Health Study	669	26	1.29	1.00	1.67	214.8 vs. 141.0 g/d
Cust, 2007	Europe	European Prospective Investigation into Cancer and Nutrition	710	6.4	1.16 1.20 1.61	0.93 0.97 1.06	1.43 1.50 2.45	≥257 vs. <170 g/d Per 100 g/d, uncalibrated Per 100 g/d, calibrated
Larsson, 2006	Sweden	Swedish Mammography Cohort	608	15.6	1.12	0.85	1.47	256 vs. 201 g/d

Table 36 Studies on carbohydrate intake identified in the CUP

Table 37 Overall evidence on carbohydrate and endometrial cancer

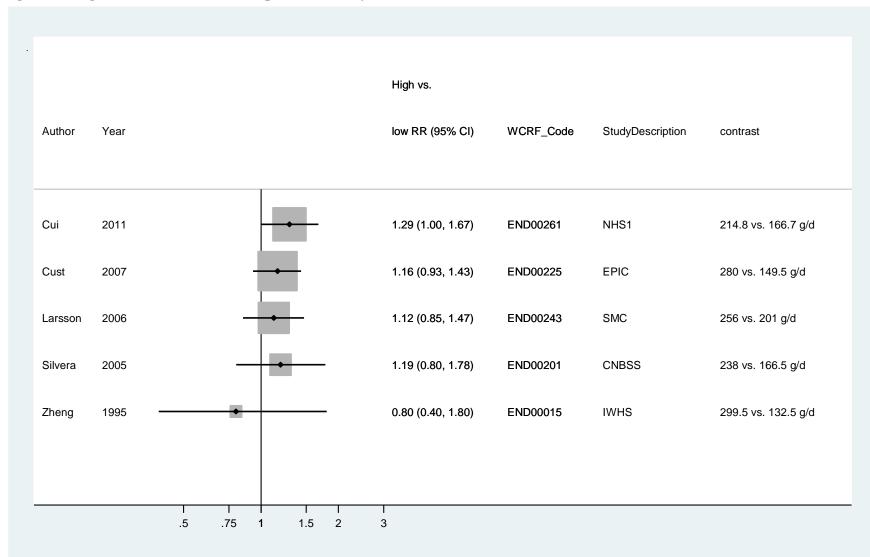

	Summary of evidence
2005 SLR 2005	Two cohort studies (3 publications) reported on carbohydrate intake and
	endometrial cancer and both found no association.
Continuous	Three cohort studies reported on carbohydrate and endometrial cancer.
Update Project	One showed a borderline association, another reported a significant
	association in analyses calibrated for diet measurement error and the
	third did not report any significant association

Table 38 Summary of results of the dose-response meta-analysis of carbohydrate and endometrial cancer

Endometrial cancer										
	SLR 2005	Continuous Update Project								
Studies (n)	1	5								
Cases (n)	426	2629								
RR (95% CI)	1.03 (0.97-1.10)	1.18 (1.02-1.37)								
Quantity	Per 15% energy intake	Per 100 g/day								
Heterogeneity (I ² , p-value)	-	0%, p=0.67								

WCRF code	Author	Year	Study design	Study name	Cancer outcome	SLR 2005	CU dose- response	CU H vs. L forest plot	Estimated values	Exclusion reason
END00261	Cui	2011	Prospective cohort study	Nurses' Health study	Incidence	No	Yes	Yes	Person-years	
END00225	Cust	2007	Prospective cohort study	European Prospective Investigation into Cancer and Nutrition	Incidence	No	Yes	Yes	Midpoints	
END00243	Larsson	2006	Prospective cohort study	Swedish Mammography Cohort study	Incidence	No	Yes	Yes	-	
END00201	Silvera	2005	Prospective cohort study	Canadian National Breast Screening Study	Incidence	Yes	Yes	Yes	Midpoints	
END00009	Jain	2000	Prospective cohort study	Canadian National Breast Screening Study	Incidence	Yes	No	No	-	Overlap with END00201 by Silvera et al.
END00015	Zheng	1995	Prospective cohort study	Iowa Women's Health Study	Incidence	Yes	Yes	Yes	Recalculation from E% to grams per day	

Table 39 Inclusion/exclusion table for meta-analysis of carbohydrate and endometrial cancer

Figure 26 Highest versus lowest forest plot of carbohydrate and endometrial cancer

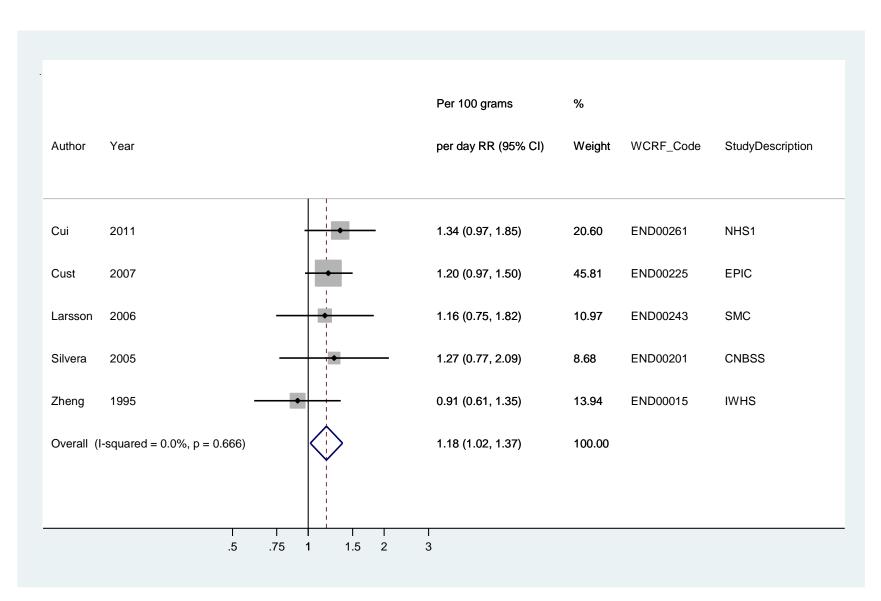


Figure 27 Dose-response meta-analysis of carbohydrate and endometrial cancer, per 100 g/d

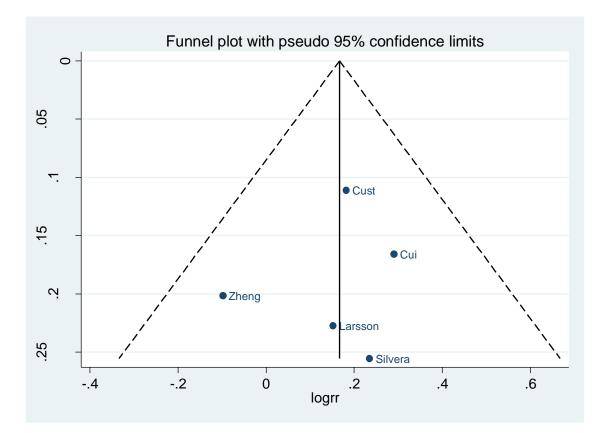


Figure 28 Funnel plot of carbohydrate intake and endometrial cancer

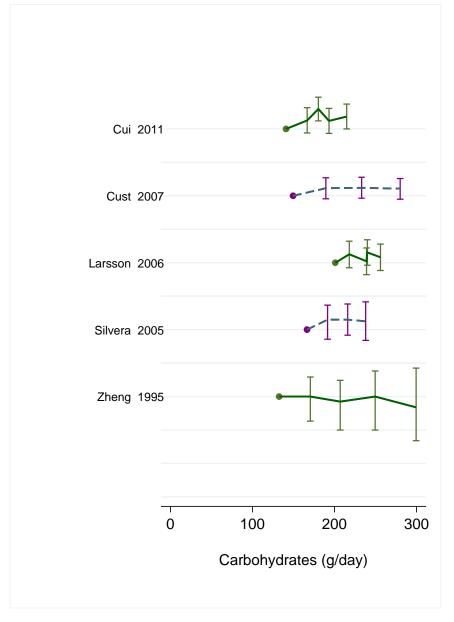


Figure 29 Dose-response graph of carbohydrate and endometrial cancer

5.1.5 Glycaemic index

Methods

A total of 5 cohort studies have been published on glycaemic index and endometrial cancer risk up to 2012, three of which were identified in the CUP. Dose-response analyses were conducted per 10 units/day.

Main results

The summary RR per 10 units/day of glycaemic index was 0.99 (95% CI: 0.90-1.10, $I^2=27.7\%$, p_{heterogeneity}=0.24, n=5). There was no evidence of publication bias with Egger's test, p=0.87.

Heterogeneity

There was low heterogeneity, $I^2=27.7\%$, $p_{heterogeneity}=0.24$.

Published meta-analyses

A meta-analysis of five cohort studies and two case-control studies found no significant association overall (high vs. low comparison), summary RR=1.15 (95% CI: 0.95-1.40) or among cohort studies, summary RR=1.00 (95% CI: 0.87-1.14). A positive association was observed among the two case-control studies, summary RR=1.56 (95% CI: 1.21-2.02) (Nagle et al, 2012). The same results were published in a meta-analysis by Galeone et al., 2012, including the same studies.

A meta-analysis of four cohort studies and one case-control study found a positive association overall, summary RR=1.22 (95% CI: 1.01-1.49), but this may have been driven by the result of the case-control study which showed a significant positive association (Gnagnarella et al, 2008).

Conclusion from the Second Expert Report

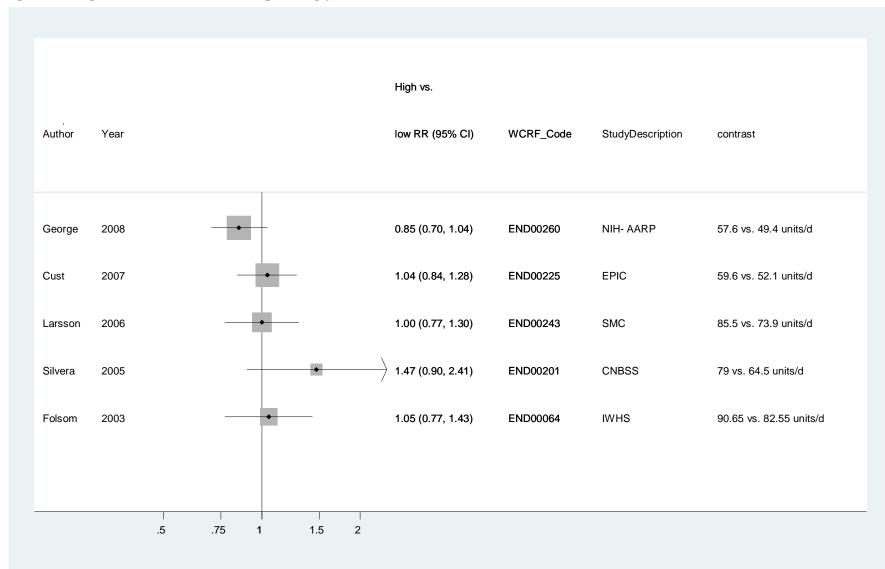
In the SLR of the 2007 Expert Report the evidence relating glycaemic index to endometrial cancer risk was limited and no conclusion was possible.

Author/year		Study name	Cases	Years of follow- up	RR	LCI	UCI	Contrast
George, 2008	USA	NIH-AARP Diet and Health Study	1041	~8	0.85	0.70	1.04	≥56.56 vs. ≤50.43 units/day
Cust, 2007	Europe	European Prospective Investigation into Cancer and Nutrition	710	6.4	1.04 1.01 1.03	0.84 0.92 0.82	1.28 1.12 1.30	≥58.4 vs. <53.4 units/d Per 5 units, uncalibrated Per 5 units, calibrated
Larsson, 2006	Sweden	Swedish Mammography Cohort	608	15.6	1.00	0.77	1.30	85.5 vs. 73.9 units/day

Table 40 Studies on glycaemic index intake identified in the CUP

Table 41 Overall evidence on glycaemic index and endometrial cancer

	Summary of evidence
2005 SLR 2005	Two cohort studies reported on glycaemic index intake and endometrial
	cancer and both found no significant association.
Continuous	Three cohort studies reported on glycaemic index and endometrial cancer
Update Project	and showed no significant association.


Table 42 Summary of results of the dose-response meta-analysis of glycaemic index and endometrial cancer

Endometrial cancer										
	SLR 2005*	Continuous Update Project								
Studies (n)	-	5								
Cases (n)	-	3200								
RR (95% CI)	-	0.99 (0.90-1.10)								
Quantity	-	Per 10 units/day								
Heterogeneity (I ² , p-value)	-	27.7%, p=0.24								

* No meta-analysis was conducted in the Second Expert Report

WCRF code	Author	Year	Study design	Study name	Cancer outcome	SLR 2005	CU dose- response	CU H vs. L forest plot	Estimated values	Exclusion reason
END00260	George	2008	Prospective cohort study	NIH-AARP Diet and Health Study	Incidence	No	Yes	Yes	Midpoints, person-years, distribution of cases	
END00225	Cust	2007	Prospective cohort study	European Prospective Investigation into Cancer and Nutrition	Incidence	No	Yes	Yes	Midpoints	
END00243	Larsson	2006	Prospective cohort study	Swedish Mammography Cohort study	Incidence	No	Yes	Yes		
END00201	Silvera	2005	Prospective cohort study	Canadian National Breast Screening Study	Incidence	Yes	Yes	Yes	Midpoints	
END00064	Folsom	2003	Prospective cohort study	Iowa Women's Health Study	Incidence	Yes	Yes	Yes	Midpoints, person-years	

Table 43 Inclusion/exclusion table for meta-analysis of glycaemic index and endometrial cancer

Figure 30 Highest versus lowest forest plot of glycaemic index and endometrial cancer

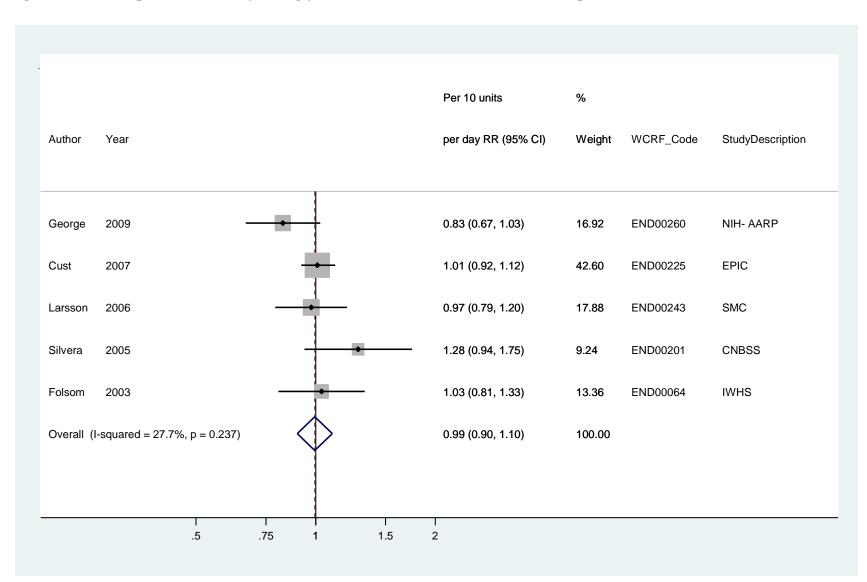


Figure 31 Dose-response meta-analysis of glycaemic index and endometrial cancer, per 10 units/d

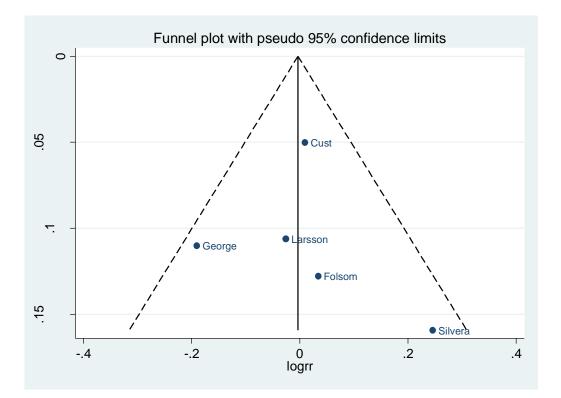
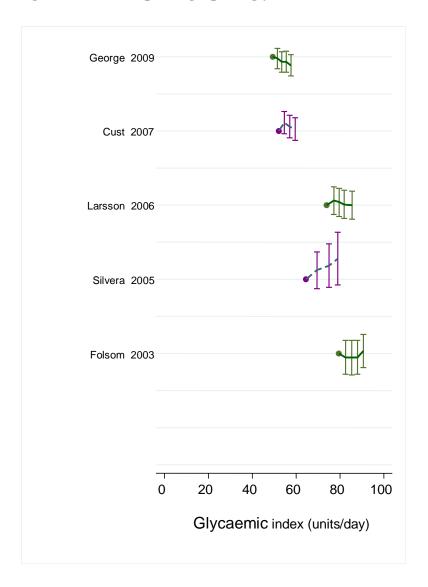



Figure 32 Funnel plot of glycaemic index and endometrial cancer

Figure 33 Dose-response graph of glycaemic index and endometrial cancer

5.1.6 Glycaemic load

Methods

A total of 6 cohort studies have been published on glycaemic load and endometrial cancer risk up to 2012, four of which were identified in the CUP. Dose-response analyses were conducted per 50 units/day.

Main results

The summary RR per 50 units/day of glycaemic load was 1.15 (95% CI: 1.06-1.25, $I^2=0\%$, p_{heterogeneity}=0.86, n=6). There was no evidence of publication bias with Egger's test, p=0.13.

One study (NHS,Cui et al, 2011), reported that the association with glycaemic load was stronger in premenopausal women. In the CBCSS (Silvera et al,2006) the association was more evident in overweight and obese women, pre-menopausal and inactive, and among postmenopausal women, in ever hormone users (although no significant). In the SMC the association was more evident in obese and inactive women (Larsson et al, 2006).

Heterogeneity

There was no evidence of heterogeneity, $I^2=0\%$, $p_{heterogeneity}=0.86$.

Published meta-analyses

A meta-analysis of six cohort studies and two case-control studies found a significant positive association overall (high vs. low comparison), summary RR=1.21 (95% CI: 1.09-1.33) and among cohort studies, summary RR=1.22 (95% CI: 1.09-1.37), but not among the two case-control studies, summary RR=1.14 (95% CI: 0.91-1.44) (Nagle et al, 2012).

A meta-analysis of five cohort studies and two case-control studies found a positive association overall, summary RR=1.19 (95% CI: 1.06-1.34), and among cohort studies, summary RR=1.21(95% CI: 1.07-1.36), but not among the case-control studies, summary RR=1.04 (95% CI: 0.72-1.51) (Galeone et al, 2012).

A meta-analysis of four cohort studies and one case-control study found a significant positive association overall, summary RR=1.36 (95% CI: 1.14-1.62) (Gnagnarella et al, 2008).

Conclusion from the Second Expert Report

In the SLR of the 2007 Expert Report the evidence relating glycaemic load to endometrial cancer risk was limited and no conclusion was possible.

Author/year	Country	Study name	Cases	Years of follow- up	RR	LCI	UCI	Contrast
Cui, 2011	USA	Nurses' Health Study	669	26	1.29	0.99	1.67	118.3 vs. 72.8 units/day
George, 2009	USA	NIH-AARP Diet and Health Study	1041	~8	1.25	0.86	1.81	≥135.31 vs. ≤66.91 units/day
Cust, 2007	Europe	European Prospective Investigation into Cancer and Nutrition	710	6.4	1.15 1.14 1.40	0.94 0.96 0.99	1.41 1.34 1.99	≥158 vs. <98 units/day Per 50 units/d, uncalibrated Per 50 units/d, calibrated
Larsson, 2006	Sweden	Swedish Mammography Cohort	608	15.6	1.15	0.88	1.51	210 vs. 155 units/day

Table 44 Studies on glycaemic load intake identified in the CUP

Table 45 Overall evidence on glycaemic load and endometrial cancer

	Summary of evidence
2005 SLR 2005	Two cohort studies reported on glycaemic load intake and endometrial
	cancer and one found a significant positive association and the other
	found a non-significant positive association
Continuous	Four cohort studies reported on glycaemic load and endometrial cancer
Update Project	and showed no significant association.

Table 46 Summary of results of the dose-response meta-analysis of glycaemic load and endometrial cancer

Endometrial cancer									
	SLR 2005*	Continuous Update Project							
Studies (n)	-	6							
Cases (n)	-	3869							
RR (95% CI)	-	1.15 (1.06-1.25)							
Quantity	-	Per 50 units/day							
Heterogeneity (I ² , p-value)	_	0%, p=0.86							

* No meta-analysis was conducted in the Second Expert Report

WCRF code	Author	Year	Study design	Study name	Cancer outcome	SLR 2005	CU dose- response	CUH vs. L forest plot	Estimated values	Exclusion reason
END00261	Cui	2011	Prospective cohort study	Nurses' Health Study	Incidence	No	Yes	Yes	Person-years	
END00260	George	2009	Prospective cohort study	NIH-AARP Diet and Health Study	Incidence	No	Yes	Yes	Midpoints, person-years, distribution of cases	
END00225	Cust	2007	Prospective cohort study	European Prospective Investigation into Cancer and Nutrition	Incidence	No	Yes	Yes	Midpoints	
END00243	Larsson	2006	Prospective cohort study	Swedish Mammography Cohort study	Incidence	No	Yes	Yes		
END00201	Silvera	2005	Prospective cohort study	Canadian National Breast Screening Study	Incidence	Yes	Yes	Yes	Midpoints	
END00064	Folsom	2003	Prospective cohort study	Iowa Women's Health Study	Incidence	Yes	Yes	Yes	Midpoints, person-years	

Table 47 Inclusion/exclusion table for meta-analysis of glycaemic load and endometrial cancer

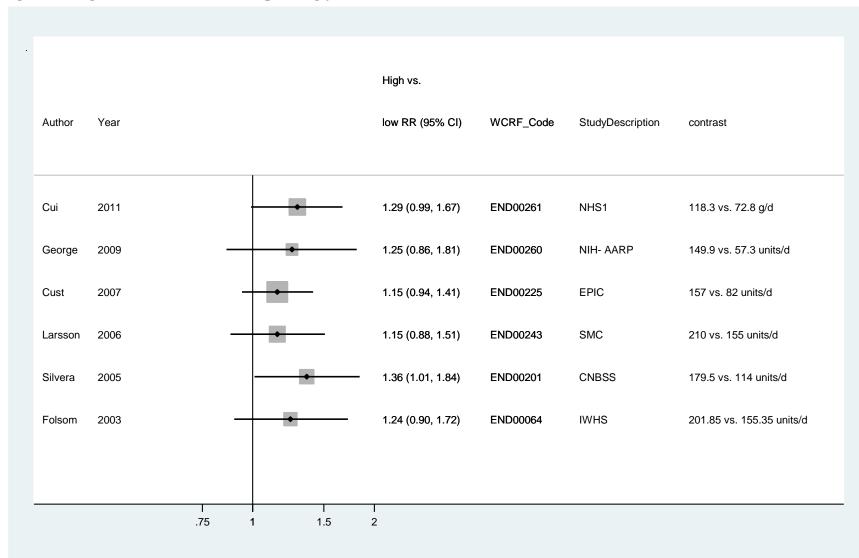


Figure 34 Highest versus lowest forest plot of glycaemic load and endometrial cancer

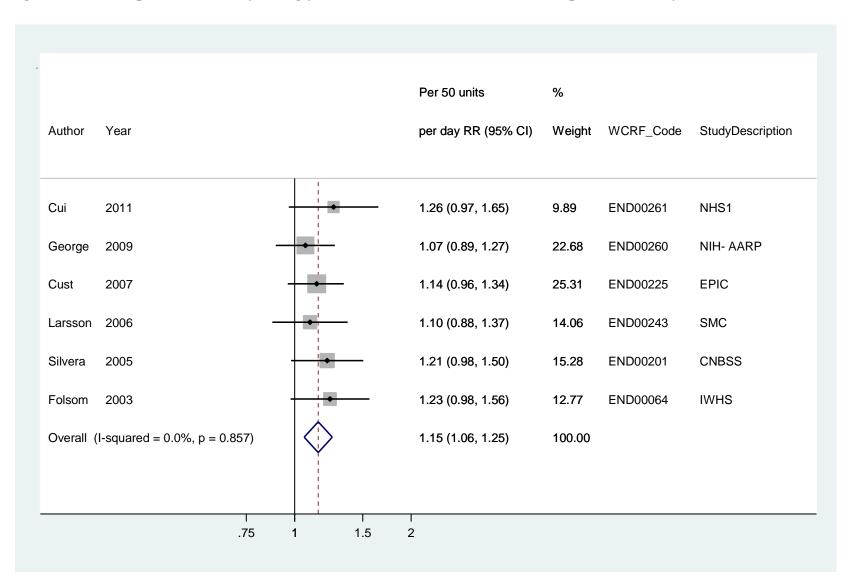
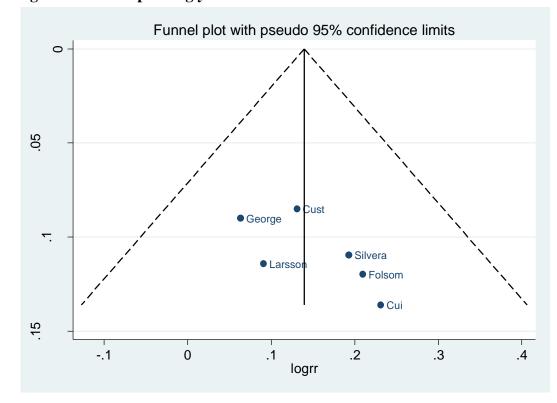



Figure 35 Dose-response meta-analysis of glycaemic load and endometrial cancer, per 50 units/day

Figure 36 Funnel plot of glycaemic load and endometrial cancer

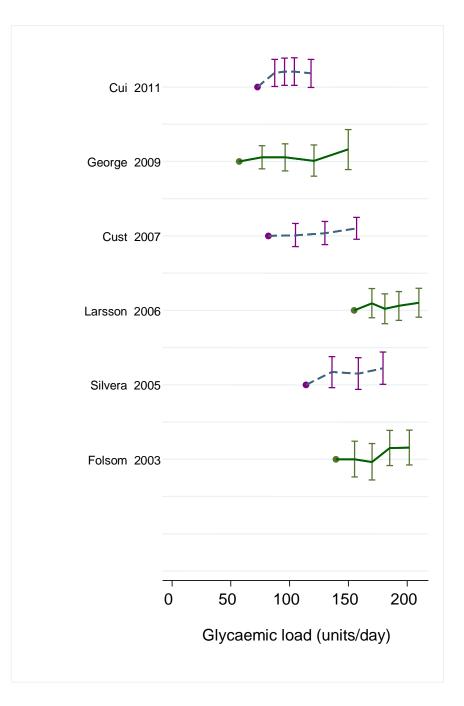


Figure 37 Dose-response graph of glycaemic load and endometrial cancer

5.1.2 Fibre

Methods

A total of 4 cohort studies have been published on fibre and endometrial cancer risk up to 2012, 3 of which were identified in the CUP. Dose-response analyses were conducted per 10 grams per day.

Main results

The summary RR per 10 grams of fibre per day was 1.09 (95% CI: 1.01-1.17, $I^2=0\%$, $p_{heterogeneity}=1.00$, n=3).

Heterogeneity

There was no evidence of heterogeneity, $I^2=0\%$, $p_{heterogeneity}=0.99$.

Conclusion from the Second Expert Report

In the systematic review of the 2007 expert report the evidence relating fibre intake to endometrial cancer risk was limited and no conclusion was possible.

Published meta-analyses

A meta-analysis based on the SLR of the Second Expert Report including one cohort study and 8 case-control studies found a summary RR of 0.71 (95% CI: 0.0.59-0.85) for high versus low fibre intake among case-control studies. The summary RR per 5 g/1000 kcal was 0.82 (95% CI: 0.75-0.90) with no evidence of heterogeneity, $I^2=0\%$, $p_{heterogeneity}=0.55$ (Bandera et al, 2007). The only prospective study found no association, RR=1.15 (95% CI: 0.89-1.49) per 5 g/1000 kcal.

Author/year	Study name	Number of cases	Years of follow- up	RR	LCI	UCI	Comparison
Aarestrup,	Diet, Cancer	217	13.5	1.23	0.75	2.02	>24 vs. ≤17 g/d
2012	and Health cohort			1.04	0.90	1.19	Per 5 g/d
Cui, 2011	Nurses' Health Study	669	26	1.21	0.94	1.57	21.3 vs. 10.7 g/d
Cust, 2007	EPIC study	710	6.4	1.13	0.91	1.40	Quartile 4 vs. 1
				1.08	0.95	1.22	Per 10 g/d,
				1.27	0.99	1.63	uncalibrated
							Per 10 g/d, calibrated

Table 48 Table Studies on fibre identified in the CUP

Table 49 Table Overall evidence on fibre and endometrial cancer

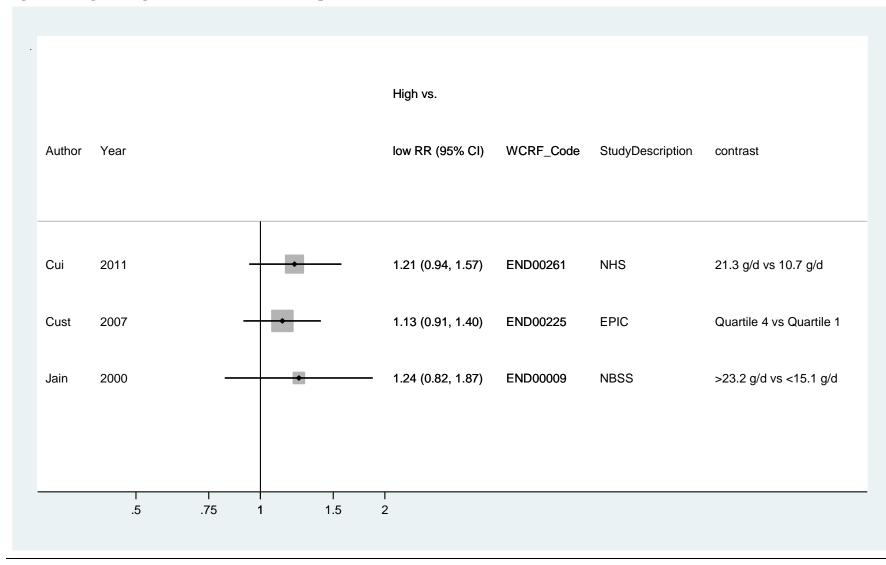

SLR	Summary of evidence
2005 SLR	One cohort study reported on fibre and endometrial cancer and found no association. Three out of six case-control studies reported significant inverse associations.
	Three additional cohort studies reported on fibre intake and endometrial
update	cancer and reported non-significant positive associations.

Table 50 Table Summary of results of the dose-response meta-analysis of fibre and endometrial cancer

Endometrial cancer							
	2nd Report	Updated meta-analysis					
Studies (n)	-	3					
Cases (n)	-	1600					
RR (95% CI)	-	1.09 (95% CI: 1.01-1.17)					
Quantity	-	Per 10 g/d					
Heterogeneity (I ² , p-value)	-	0%, p=0.99					

WCRF code	Author	Year	Study	Study	Cancer	SLR	CU dose-	CU H	Estimated	Exclusion reason
			design	name	outcome		response	vs. L	values	
								forest		
								plot		
END00291	Aarestrup	2012	Prospective	The Diet,	Incidence	No	No	No		Overlap with Cust
			cohort study	Cancer						et al, 2007
				and Health						(END00225)
				Study						<u>,</u>
END00261	Cui	2011	Prospective	Nurses'	Incidence	No	Yes	Yes	Person-years	
			cohort study	Health						
				Study						
END00225	Cust	2007	Prospective	EPIC	Incidence	No	Yes	Yes		
			cohort study	study						
END00009	Jain	2000	Case cohort	Canadian	Incidence	Yes	Yes	Yes	Midpoints,	
			study	National					distribution	
				Breast					of cases and	
				Screening					person-years	
				Study						

Table 51Table Inclusion/exclusion table for meta-analysis of fibre and endometrial cancer

Figure 38 Figure Highest versus lowest forest plot of fibre and endometrial cancer

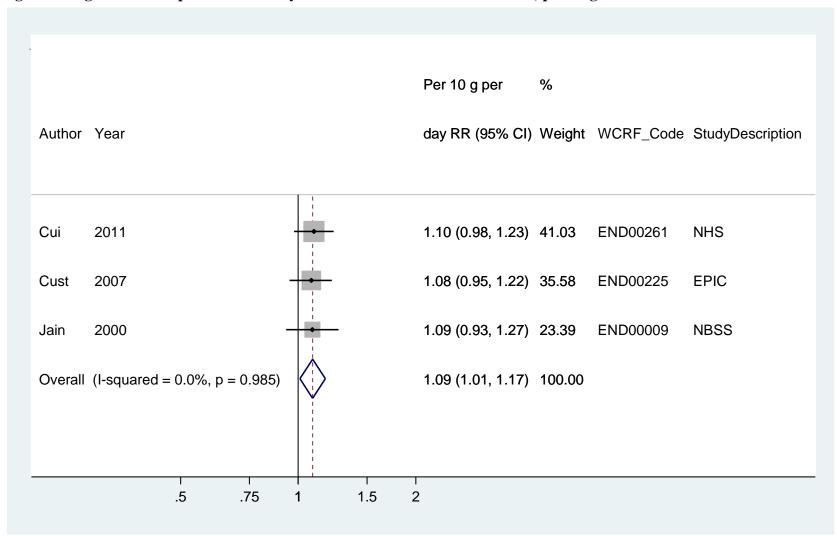


Figure 39 Figure Dose-response meta-analysis of fibre and endometrial cancer, per 10 g/d

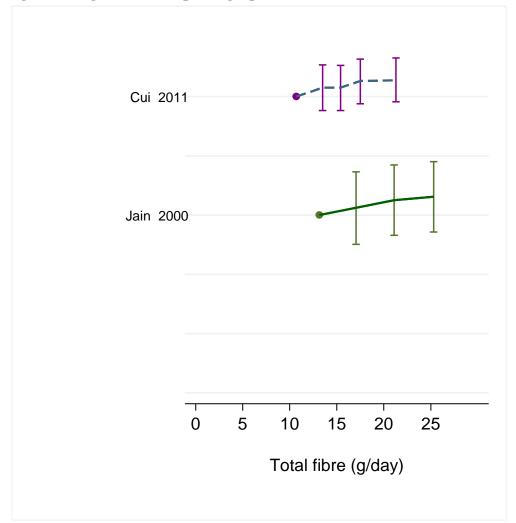


Figure 40 Figure Dose-response graph of fibre and endometrial cancer

5.2.1 Total Fat

Methods

Up to December 2012, reports from three cohort studies were identified; one of them was identified during the CUP. The CUP meta-analysis included three studies. The dose-response results are presented for an increment of 10 grams of total fat per day.

One of the studies identified during the 2005 SLR and included in the meta-analysis (Furberg, 2003) presented only age-adjusted results.

Main results

The summary RR per 10 grams per day was 1.00 (95% CI: 0.96-1.04; $I^2 = 68.7\%$, $P_{heterogeneity}=0.04$).

Heterogeneity

There was high heterogeneity across the limited number of published studies $(I^2=68.7\%, p=0.04)$.

Comparison with the Second Expert Report

Two studies were identified during the SLR 2005 (Jain, 2000 and Furberg, 2003). These studies showed no association between total fat intake and endometrial cancer

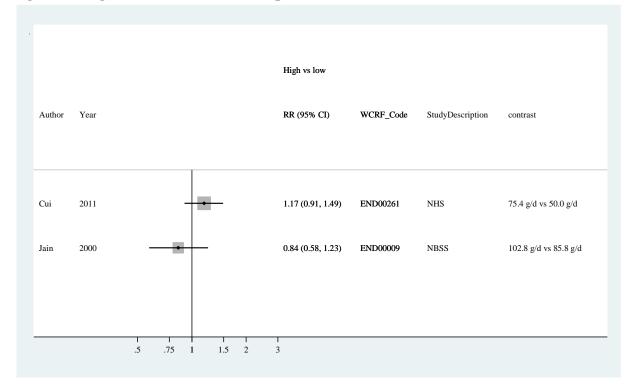
Published meta-analysis

A meta-analysis of seven case-control studies (Bandera, 2007) showed a RR of 1.24 (95% CI: 1.10- 1.41; $I^2 = 58.8\%$; $P_{heterogeneity} = 0.03$) per 10% kcal from total fat. After excluding studies that did not adjust for total energy intake, there was still suggestion of an association and no evidence of heterogeneity (RR=1.17; 95% CI: 1.08-1.28; $I^2 = 0.0\%$; $P_{heterogeneity} = 0.67$).

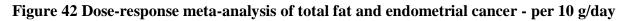
Author, year	Country	Study name	Cases	Years of follow up	RR	LCI	UCI	Contrast
Cui, 2011	USA	Nurses' Health Study	669	~26	1.17	0.91	1.49	75.4 g/d vs 50.0 g/d

Table 53 Overall evidence on total fat intake and endometrial cancer

	Summary of evidence				
SLR	Two studies were identified during the SLR, showing no association				
	between total fat intake and endometrial cancer				
Continuous Update	One cohort study was identified and could be included in the meta-				
Project	analysis. Overall, three studies were included in the CUP meta-				
	analysis				


Table 54 Summary of results of the dose response meta-analysis of total fat intake and endometrial cancer


	Endometrial cancer	
	SLR*	Continuous Update Project
Studies (n)	-	3
Cases (n)	-	1020
Increment unit used	-	Per 10g/day
Overall RR (95%CI)	-	1.00 (0.96-1.04)
Heterogeneity (I ² ,p-value)	-	67.8%, p=0.04


*No meta-analysis for cohort studies was conducted in the second report

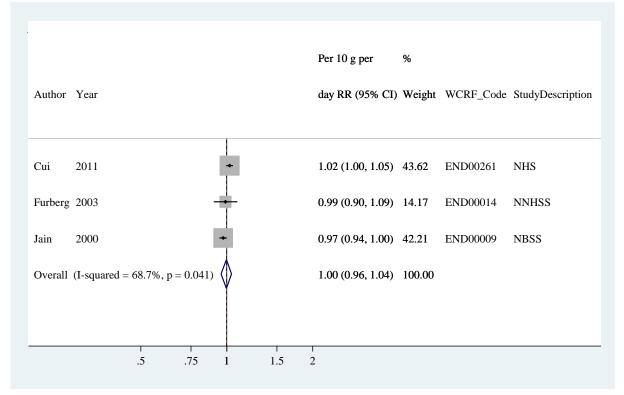

WCRF_ Code	Author	Year	Study Design	Study Name	Cancer Outcome	SLR	CUP dose- response meta- analysis	CUP HvL forest plot	Estimated values	Exclusion reasons
END00261	Cui	2011	Prospective Cohort study	Nurses' Health Study	Incidence	No	Yes	Yes	Person years	
END00014	Furberg	2003	Prospective Cohort study	Norwegian National Health Screening Service	Incidence	Yes	Yes	No	Rescale continuous value	
END00009	Jain	2000	Case Cohort Study	Canadian National Breast Cancer Screening Study	Incidence	Yes	Yes	Yes	Person years and mid- exposure values	

 Table 55 Inclusion/exclusion table for meta-analysis of total fat intake and endometrial cancer

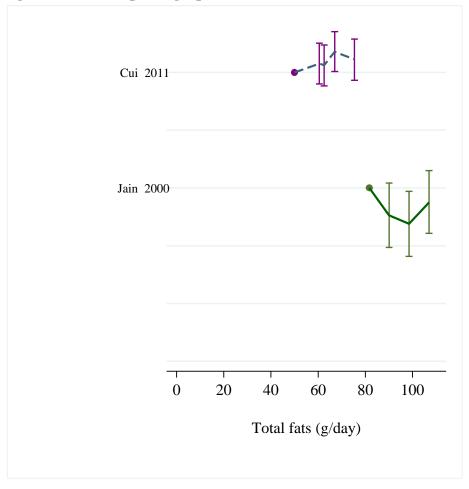


Figure 43 Dose-response graph of total fat and endometrial cancer

5.4.1 Alcohol (ethanol)

Methods

Up to December 2012, reports from ten cohort studies and 12 publications were identified; five of them were identified during the SLR 2005 and seven were identified during the CUP. The CUP meta-analysis included nine studies. Drinks per day were rescaled to g/day in one study using 13 grams of ethanol intake per drink. The dose-response results are presented for an increment of 10 grams of ethanol per day.

Main results

The summary RR per 10 g/d was 1.01 (95% CI: 0.97-1.06, $I^2=29.0\%$, $P_{heterogeneity}=0.18$) for all studies combined. In sensitivity analysis of the influence of individual studies, the summary RR ranged from 0.98 (95% CI: 0.95-1.02) when excluding the Multiethnic Cohort Study (Setiawan et al, 2008) to 1.03 (95% CI: 0.96-1.09) when excluding the EPIC Study (Fedirko et al, 2012).

There was no evidence of a nonlinear association. Restricted cubic splines were used to fit the data instead of fractional polynomial models because the latests were not robust.

In the NIH-AARP (Yang et al, 2011), there was some suggestion of higher risks associated with alcohol consumption among lean women (BMI, <25) (p interaction: 0.002). In contrast, significant inverse trends were observed among heavier women (p trend: 0.04). Alcohol intake was most clearly associated with increased endometrial cancer risk among postmenopausal hormone users in lean women; compared to non-drinkers, increased risk was observed for >0–12 g/day (RR = 1.33; 95% CI: 0.95–1.87), 12-<24 g/day (RR =1.60; 95% CI: 1.05–2.45) and >24 g/day (RR = 1.28; 95% CI: 0.73–2.23). Hormone use modified the association of alcohol intake with endometrial cancer (P interaction: 0.005). No association was observed in never-hormone-users, but there was some suggestion of positive association among postmenopausal hormone users.

In the SMC (Friberg et al, 2009) and in the MEC (Setiawan et al, 2008) postmenopausal hormone use did not modify the association of alcohol intake and endometrial cancer. In the MEC, the RR estimates were higher in hormone users than in non users, but the number of cases was very low (8 cases with >2 drinks/day)

Heterogeneity

There was evidence of low heterogeneity across the studies ($I^2=29.0\%$, p=0.18). There was no indication of publication bias with Egger's test (p=0.24). The Multiethnic Cohort Study (Setiawan et al, 2008) was the only study reporting a positive significant association.

Conclusion from the Second Expert Report

Five publications from three cohorts were identified during the Second Expert Report. No meta-analysis was conducted in the Second Expert Report, only high versus low analysis.

Published meta-analysis

In a published meta-analysis (Sun et al, 2011), the summary RR of endometrial cancer for alcohol drinkers vs. non-drinkers was 1.04 (95% CI: 0.91-1.18, I^2 = 6.93%, P_{heterogeneity}=0.226) for six prospective studies and 0.89 (95% CI: 0.76-1.05, I^2 = 50.73%, P_{heterogeneity}=<0.001) for 14 case-control studies .

A meta-analysis comparing drinkers vs non-drinkers reported a summary RR of 1.01 (95% CI 0.90–1.14) for seven prospective studies and 0.90 (95% CI 0.80–1.01) for 20 case-control studies (Turati et al, 2010).

In another published meta-analysis (Friberg et al, 2010) of seven prospective studies, the summary RR for endometrial cancer was 1.17 (95% CI: 0.93-1.46, I^2 = 50.0%, P_{heterogeneity} =0.061) comparing highest versus lowest category of intake. There was evidence of a non-linear association. Women drinking less than one drink of alcohol (13 g of ethanol) per day had a lower risk for endometrial cancer. However, there was an increased risk for endometrial cancer for intakes higher than two alcoholic drinks per day: compared with non-drinkers, the risk was higher by 14% (95% CI: 0.95–1.36) for 2–2.5 drinks per day and by 25% (95% CI: 0.98–1.58) for more than 2.5 drinks per day.

In the CUP analysis, the non-linear association disappears after the inclusion of the results of EPIC (Fedirko et al, 2012) and the NIH-AARP (Yang et al, 2011) cohort studies in the metaanalysis.

Author, year	Country	Study name	Cases	Years of follow up	RR	LCI	UCI	Contrast
Fedirko, 2012	Europe	European Prospective Investigation into Cancer and Nutrition	1382	11	0.85	0.61	1.18	> 36 g/d vs non drinkers
Yang, 2011	USA	National Institute of Health - American Association of Retired Persons Diet and Health Study	1491	9.4	0.93	0.71	1.20	>= 24 g/d vs non drinkers
Friberg, 2009	Sweden	Swedish Mammography Study	687	17.6	1.09	0.71	1.68	>=10 g/d vs non drinkers
Allen, 2009	UK	The Million Women Study	4118	7.2	1.05 0.97	0.91 0.82	1.22 1.03	>=15 drinks/week vs non drinkers Per 10 g ethanol/day
Setiawan, 2008	USA	Multiethnic Cohort Study	324	8.3	2.01	1.30	3.11	>=24 g/d vs non drinkers
Kabat, 2008	Canada	Canada National Breast Screen Study	426	16.4	0.84	0.52	1.36	>=30 g/d vs non drinkers
Loerbroks, 2007	Netherlands	Netherlands Cohort Study	280	11.3	1.78	0.88	3.60	>=30 g/d vs non drinkers

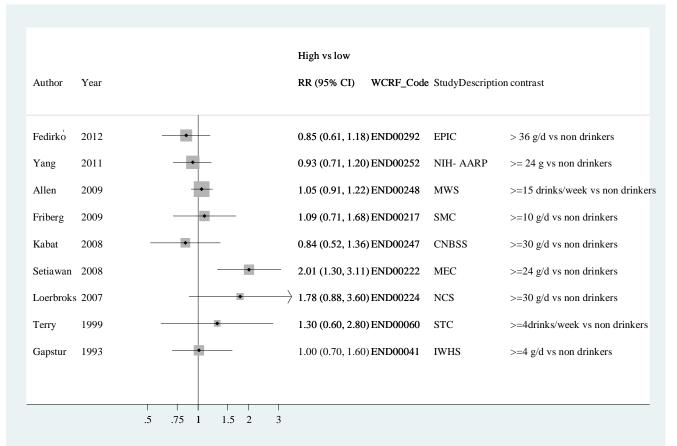
Table 56 Studies on ethanol consumption identified in the CUP

Table 57 Overall evidence on ethanol consumption and endometrial cancer

	Summary of evidence
SLR 2005	Three cohort studies were identified, with a total of five publications.
	The highest vs lowest meta-analysis showed no association
Continuous Update	Seven additional publications were identified; only one study showed
Project	a positive association between ethanol consumption and endometrial
	cancer. A total of nine studies could be included in the dose-response
	meta-analysis.

Table 58 Summary of results of the dose response meta-analysis of ethanol consumption and endometrial cancer

Endometrial cancer								
	SLR 2005*	Continuous Update Project						
Studies (n)	3	9						
Cases (n)	726	8992						
Increment unit used	Highest vs. lowest	Per 10g/day						
Overall RR (95%CI)	1.00 (0.81, 1.24)	1.01 (0.97-1.06)						
Heterogeneity (I ² ,p-value)	0.0%, p=0.780	29.0%, p=0.18						


*No meta-analysis was conducted in the Second Expert Report

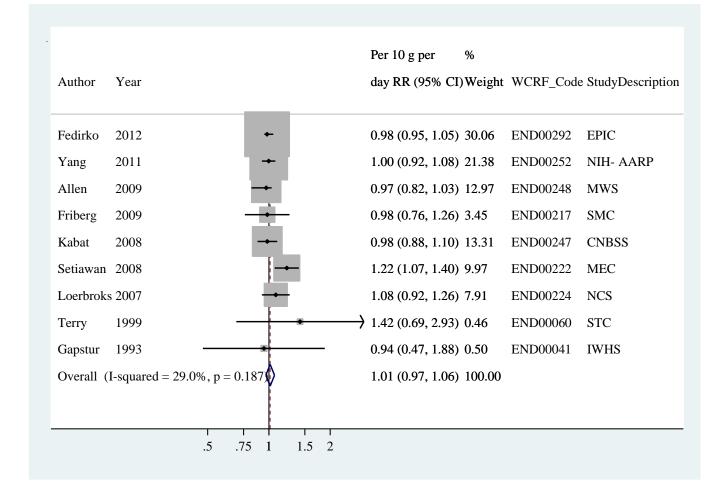

WCRF_ Code	Author	Year	Study Design	Study Name	Cancer Outcome	SLR 2005	CUP dose- response meta- analysis	CUP HvL forest plot	Estimated values	Exclusion reasons
END00292	Fedirko	2012	Prospective Cohort study	European Prospective Investigation into Cancer and Nutrition	Incidence	No	Yes	Yes	Rescale continuous values	-
END00252	Yang	2011	Prospective Cohort study	National Institute of Health - American Association of Retired Persons Diet and Health Study	Incidence	No	Yes	Yes	Mid-points	-
END00217	Friberg	2009	Prospective Cohort study	Swedish Mammography Study	Incidence	No	Yes	Yes	Mid-points	-
END00248	Allen	2009	Prospective Cohort study	The Million Women Study	Incidence	No	Yes	Yes	-	-
END00222	Setiawan	2008	Prospective Cohort study	Multiethnic Cohort Study	Incidence	No	Yes	Yes	Person-years and mid-points per category	-
END00247	Kabat	2008	Prospective Cohort study	Canada National Breast Screen Study	Incidence	No	Yes	Yes	Person-years mid-points per category and cases number per category	-
END00224	Loerbroks	2007	Case Cohort Study	Netherlands Cohort Study	Incidence	No	Yes	Yes	-	-
END00201	Silvera	2005	Prospective Cohort study	Canada National Breast Screen Study	Incidence	Yes	No	No	-	Superseded by Kabat (END00247)

Table 59 Inclusion/exclusion table for meta-analysis of ethanol consumption and endometrial cancer

END00064	Folsom	2003	Prospective Cohort study	Iowa Women Health Study	Incidence	Yes	No	No	-	Two categories (yes vs no) Gapstur (END00041) was used instead
END00009	Jain	2000	Prospective Cohort study	Canada National Breast Screen Study	Incidence	Yes	No	No	-	Superseded by Kabat (END00247)
END00060	Terry	1999	Prospective Cohort study	Swedish Twin cohort	Incidence	Yes	Yes	Yes	Drinks rescaled to g/day. Mid-points	-
END00041	Gapstur	1993	Prospective Cohort study	Iowa Women Health Study	Incidence	Yes	Yes	Yes	Mid-points	-

Figure 44 Highest versus lowest forest plot of ethanol consumption and endometrial cancer

Figure 45 Dose-response meta-analysis of ethanol and endometrial cancer - per 10 g/day

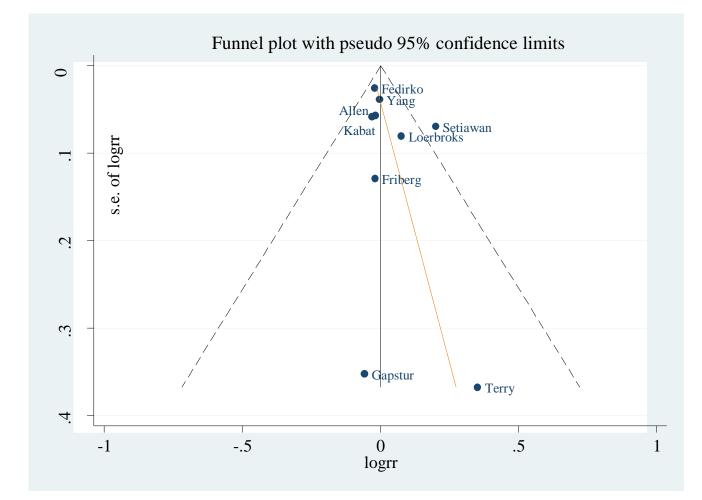
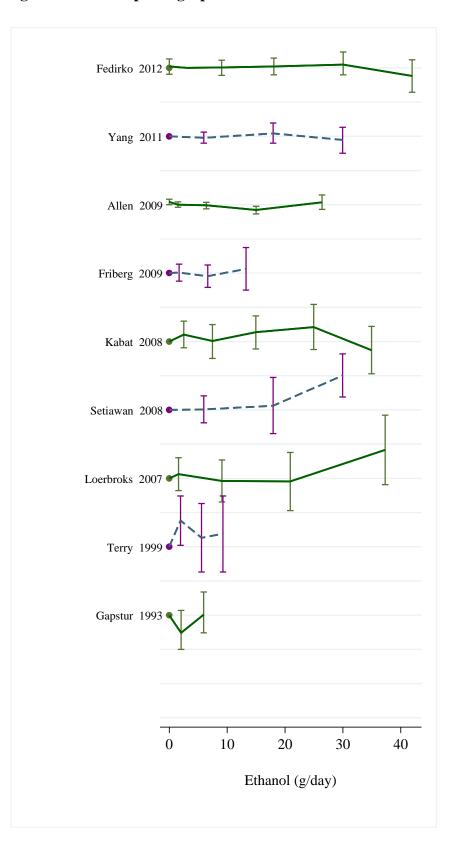



Figure 46 Funnel plot of ethanol consumption and endometrial cancer

Figure 47 Dose-response graph of ethanol and endometrial cancer

Figure 48 Nonlinear dose-response figure for total ethanol and endometrial cancer

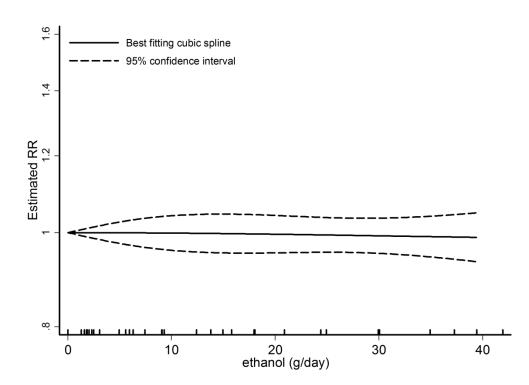
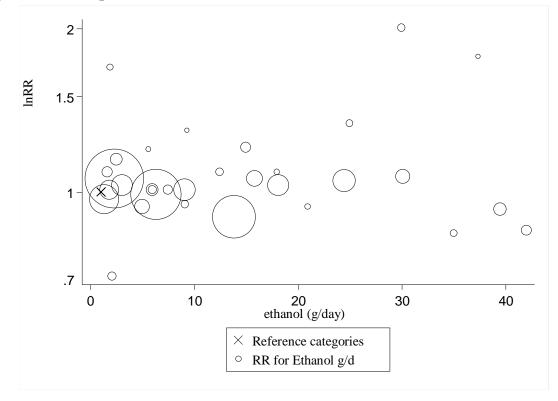
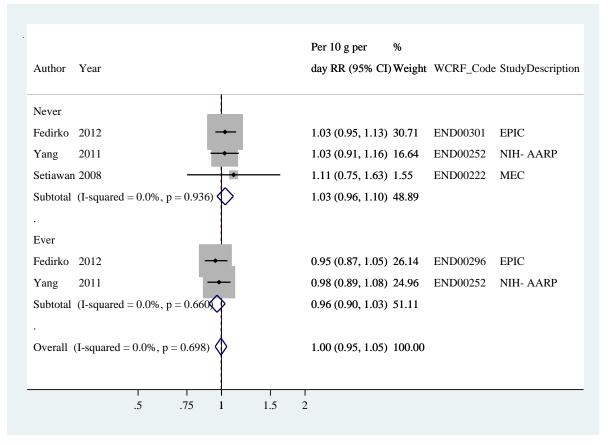



Figure 49Scatter plot of risk estimates for total ethanol and endometrial cancer



Explanation for nonlinear dose-response analyses

The nonlinear dose-response analyses was computed using the pool first command in Stata using the categorical risk estimates from each study included in the analysis. Several polynomial curves were tested, the program automatically selects the curve with the best fit. The dose-response relationship was also explored using a scatter plot. The relative risk estimates were plotted against the corresponding levels of the exposure (empty circles) compared with the reference category X. The area of the circles is proportional to the inverse of the variance and was used as weight. Larger studies with small variances are given more weight than small studies with large variances. Random effects models were used for the analysis.

Ethanol (g/day)	RR (95% CI)
1.0	1.00
5.0	1.03 (0.98-1.08)
10.0	1.05 (0.96-1.14)
15.0	1.06 (0.95-1.18)
20.0	1.07 (0.94-1.21)
25.0	1.07 (0.93-1.23)
30.0	1.06 (0.90-1.24)
35.0	1.04 (0.86-1.26)

Table 60 RRs (95% CIs) for nonlinear analysis of total ethanol and endometrial cancer

Figure 50 Dose-response meta-analysis of ethanol and endometrial cancer - per 10 g/day, stratified by hormone replacement therapy

Figure 51 Dose-response meta-analysis of ethanol and endometrial cancer - per 10 g/day, stratified by menopausal status

5.4.1.1 Ethanol from beer

Methods

Up to December 2012, reports from five cohort studies were identified; all of them were identified during the CUP (including one paper missed by the SLR). The CUP meta-analysis included three studies. The dose-response results are presented for an increment of 10 grams of ethanol per day.

Main results

The summary RR per 10 grams per day was 1.02 (95% CI: 0.91-1.13; $I^2 = 0\%$, $P_{heterogeneity}=0.36$).

Heterogeneity

There was no evidence of heterogeneity across the limited number of published studies ($I^2=0\%$, p=0.36).

Conclusion from the Second Expert Report

No study was found during the SLR 2005.

Published meta-analysis

In a published meta-analysis of three prospective and four case-control studies (Sun Q et al, 2011), the summary RR for endometrial cancer was 0.91 (95% CI: 0.75-1.11), among beer drinkers vs. non-drinkers.

Author, year	Country	Study name	Cases	Years of follow up	RR	LCI	UCI	Contrast
Fedirko, 2012	Europe	European Prospective Investigation into Cancer and Nutrition		11	0.95	0.72	1.24	> 6 g/d vs non drinkers
Yang, 2011	USA	National Institute of Health - American Association of Retired Persons Diet and Health Study	1491	9.4	0.99	0.49	1.99	>=24 g/d vs non drinkers
Setiawan, 2008	USA	Multiethnic Cohort Study	324	8.3	1.46	0.52	4.12	>=24 g/d vs non drinkers
Loerbroks, 2007	Netherlands	Netherlands Cohort Study	280	11.3	1.30	0.82	2.07	Yes vs No
Gapstur, 1993*	USA	Iowa Women's Health Study	167	~4	0.7 0	0.30	1.60	>= 4 g/d vs non drinkers

Table 61 Studies on ethanol from beer intake identified in the CUP

*missed by 2005 SLR

Table 62 Overall evidence on ethanol from beer intake and endometrial cancer

	Summary of evidence
SLR 2005	No study was identified during the SLR 2005 *
Continuous Update	Four cohort studies were identified; three of them could be included
Project	in the meta-analysis. None of the studies showed a significant association between ethanol from beer and endometrial cancer risk.

*One study was missed by the 2005 SLR

Table 63 Summary of results of the dose response meta-analysis of ethanol from beer intake and endometrial cancer

	Endometrial cancer	
	SLR 2005*	Continuous Update Project
Studies (n)	-	3
Cases (n)	-	3197
Increment unit used	-	Per 10g/day
Overall RR (95%CI)	-	1.02 (0.91-1.13)
Heterogeneity (I ² ,p-value)	-	0%, p=0.36

*No meta-analysis was conducted in the Second Expert Report

WCRF_ Code	Author	Year	Study Design	Study Name	Cancer Outcome	SLR 2005	CUP dose- response meta- analysis	CUP HvL forest plot	Estimated values	Exclusion reasons
END00292	Fedirko	2012	Prospective Cohort study	European Prospective Investigation into Cancer and Nutrition	Incidence	No	Yes	Yes	Rescale continuous values	
END00252	Yang	2011	Prospective Cohort study	National Institute of Health - American Association of Retired Persons Diet and Health Study	Incidence	No	Yes	Yes	Mid-exposure values	
END00222	Setiawan	2008	Prospective Cohort study	Multiethnic Cohort Study	Incidence	No	Yes	Yes	Person years and mid- exposure values	
END00224	Loerbroks	2007	Case Cohort Study	Netherlands Cohort Study	Incidence	No	No	Yes	-	Only two categories (yes vs no)
END00041	Gapstur	1993	Prospective Cohort study	Iowa Women Health Study	Incidence	No	No	Yes	-	Only two categories

 Table 64 Inclusion/exclusion table for meta-analysis of ethanol from beer intake and endometrial cancer

Figure 52 Highest versus lowest forest plot of ethanol from beer intake and endometrial cancer

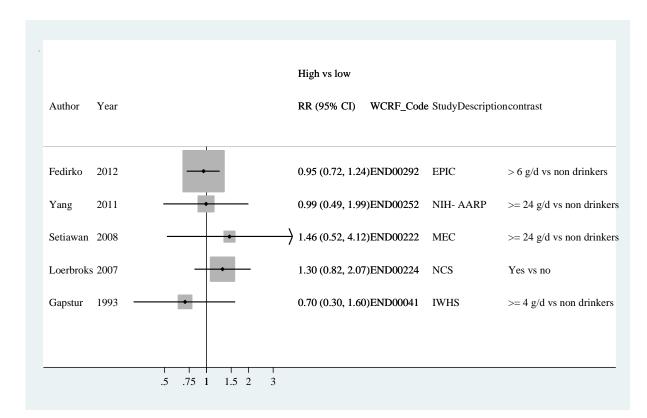
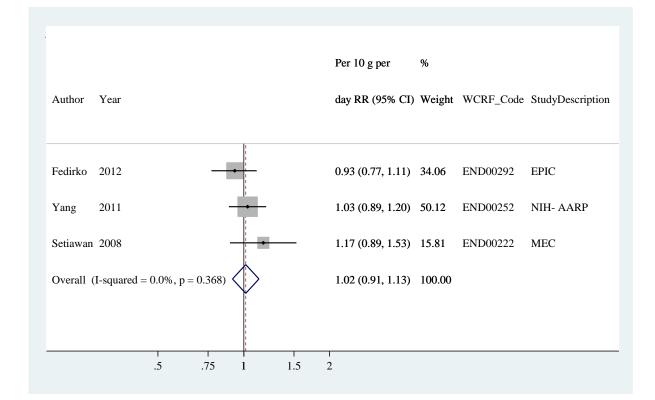
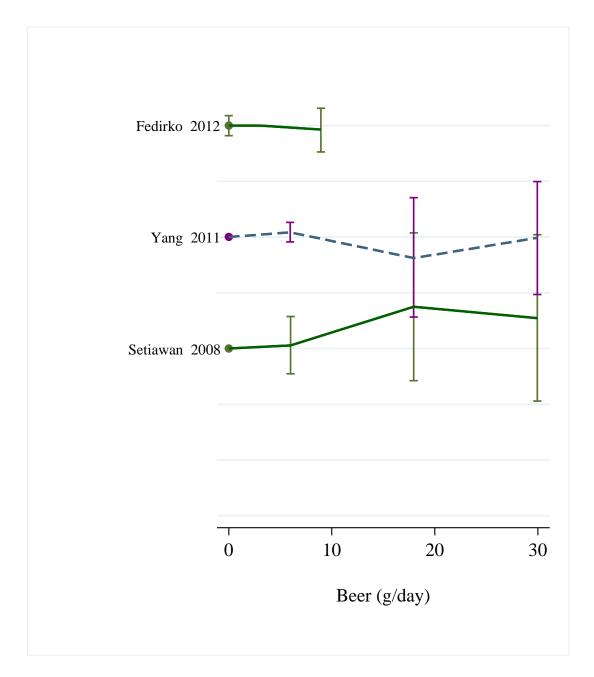




Figure 53 Dose-response meta-analysis of ethanol from beer and endometrial cancer - per 10 g/day

Figure 54 Dose-response graph of ethanol from beer and endometrial cancer

5.4.1.2 Ethanol from wine

Methods

Up to December 2012, reports from five cohort studies were identified; of them were identified during the CUP (including one paper missed by the SLR). The CUP meta-analysis included four studies. The dose-response results are presented for an increment of 10 grams of ethanol per day.

Main results

The summary RR per 10 grams per day was 1.07 (95% CI: 0.95-1.21; $I^2 = 70.5\%$, $P_{heterogeneity}=0.017$).

Heterogeneity

There was evidence of high heterogeneity across the limited number of published studies ($I^2=70.5\%$, p=0.017). Egger's test did not show evidence of publication bias among the limited number of studies (p= 0.36)

Conclusion from the Second Expert Report

No study was found during the SLR 2005.

Published meta-analysis

In a published meta-analysis of three prospective and four case-control studies (Sun Q et al, 2011), the summary RR for endometrial cancer was 1.07 (95% CI: 0.92-1.25), among wine drinkers vs. non-drinkers.

Author, year	Country	Study name	Cases	Years of follow up	RR	LCI	UCI	Contrast
Fedirko,201 2	Europe	European Prospective Investigation into Cancer and Nutrition	1382	11	1.05	0.82	1.35	> 6 g/d vs non drinkers
Yang, 2011	USA	National Institute of Health - American Association of Retired Persons Diet and Health Study	1491	9.4	0.95	0.61	1.48	>=24 g/d vs non drinkers
Setiawan, 2008	USA	Multiethnic Cohort Study	324	8.3	3.15	1.63	6.09	>=24 g/d vs non drinkers
Loerbroks, 2007	Netherlands	Netherlands Cohort Study	280	11.3	1.11	0.64	1.93	21.8 g/d vs non drinkers
Gapstur, 1993*	USA	Iowa Women's Health Study	167	~4	0.80	0.40	1.70	>= 4 g/d vs non drinkers

*missed by 2005 SLR

Table 66 Overall evidence on ethanol from wine intake and endometrial cancer

	Summary of evidence
SLR 2005	No study was identified during the SLR 2005*
Continuous Update	Four cohort studies were identified. One of the studies identified
Project	showed a significant negative association. All of the studies identified
	could be included in the dose-response meta-analysis.

*One study was missed by the 2005 SLR

Table 67 Summary of results of the dose response meta-analysis of ethanol from wine intake and endometrial cancer

Endometrial cancer										
	SLR 2005*	Continuous Update Project								
Studies (n)	-	4								
Cases (n)	-	3477								
Increment unit used	-	Per 10g/day								
Overall RR (95%CI)	-	1.07 (0.95-1.21)								
Heterogeneity (I ² ,p-value)	-	70.5%, p=0.017								

*No meta-analysis was conducted in the Second Expert Report

WCRF_ Code	Author	Year	Study Design	Study Name	Cancer Outcome	SLR 2005	CUP dose- response meta- analysis	CUP HvL forest plot	Estimated values	Exclusion reasons
END00292	Fedirko	2012	Prospective Cohort study	European Prospective Investigation into Cancer and Nutrition	Incidence	No	Yes	Yes	Rescale continuous values	-
END00252	Yang	2011	Prospective Cohort study	National Institute of Health - American Association of Retired Persons Diet and Health Study	Incidence	No	Yes	Yes	Mid-exposure values	
END00222	Setiawan	2008	Prospective Cohort study	Multiethnic Cohort Study	Incidence	No	Yes	Yes	Person years and mid- exposure values	
END00224	Loerbroks	2007	Case Cohort Study	Netherlands Cohort Study	Incidence	No	Yes	Yes	-	
END00041	Gapstur	1993	Prospective Cohort study	Iowa Women Health Study	Incidence	No	No	Yes	-	Only two categories

 Table 68 Inclusion/exclusion table for meta-analysis of ethanol from wine intake and endometrial cancer

Figure 55 Highest versus lowest forest plot of ethanol from wine intake and endometrial cancer

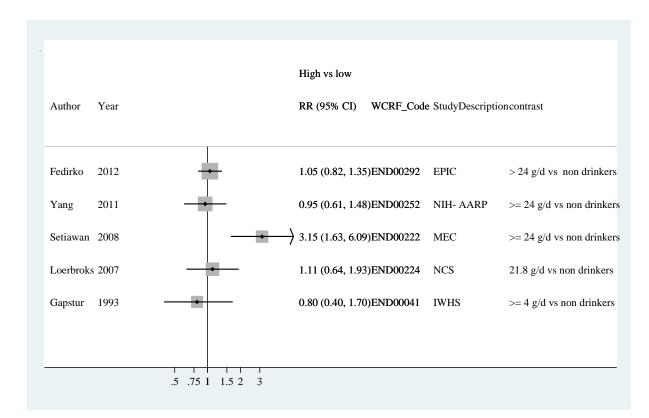
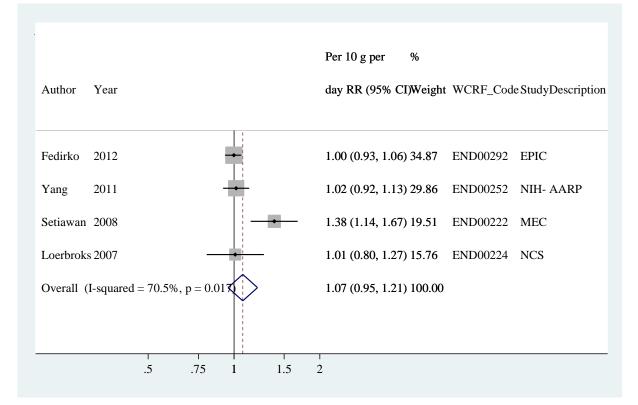



Figure 56 Dose-response meta-analysis of ethanol from wine and endometrial cancer - per 10 g/day

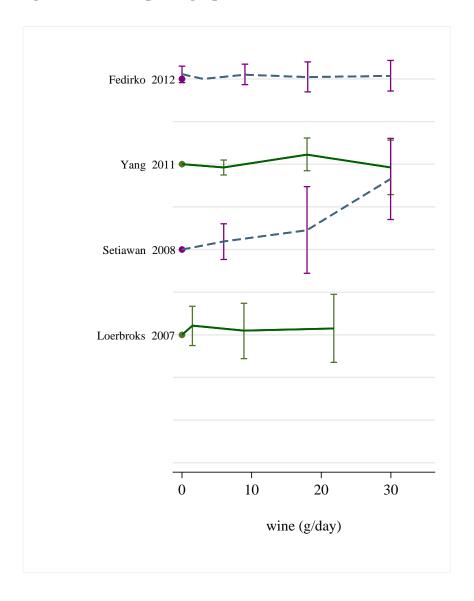


Figure 57 Dose-response graph of ethanol from wine and endometrial cancer

5.4.1.3 Ethanol from liquor

Methods

Up to December 2012, reports from five cohort studies were identified; all of them were identified during the CUP (including one paper missed by the SLR). The CUP meta-analysis included three studies. The dose-response results are presented for an increment of 10 grams of ethanol per day.

Main results

The summary RR per 10 grams per day was 1.05 (95% CI: 0.87-1.25); $I^2 = 76.1\%$, P_{heterogeneity}=0.015).

Heterogeneity

There was evidence of high heterogeneity across the limited number of published studies ($I^2=76.1\%$, p=0.015).

Conclusion from the Second Expert Report

No study was found during the SLR 2005.

Published meta-analysis

In a published meta-analysis of three prospective and four case-control studies (Sun Q et al, 2011), the summary RR for endometrial cancer was 1.22 (95% CI: 1.03-1.45), among liquor drinkers vs. non-drinkers. The EPIC study (Fedirko et al, 2012) and the NIH-AARP cohort study (Yang et al, 2011) were not included in this meta-analysis. Liquor intake was not related to endometrial cancer risk in these two studies.

Table 69 Studies on ethanol from liquor intake identified in the CUP

Author, year	Country	Study name	Cases	Years of follow up	RR	LCI	UCI	Contrast
Fedirko, 2012	Europe	European Prospective Investigation into Cancer and Nutrition	1382	11	1.11	0.87	1.41	> 6 g/d vs non drinkers
Yang, 2011	USA	National Institute of Health - American Association of Retired Persons Diet and Health Study	1491	9.4	0.77	0.51	1.18	>=24 g/d vs non drinkers
Setiawan, 2008	USA	Multiethnic Cohort Study	324	8.3	1.96	0.98	3.90	>=24 g/d vs non drinkers
Loerbroks, 2007	Netherland s	Netherlands Cohort Study	280	11.3	1.11	0.73	1.68	Yes vs No
Gapstur, 1993*	USA	Iowa Women's Health Study	167	~4	1.40	0.80	2.40	>= 4 g/d vs non drinkers

*missed by 2005 SLR

Table 70 Overall evidence on ethanol from liquor intake and endometrial cancer

	Summary of evidence
SLR 2005	No study was found during the SLR 2005 *
Continuous Update	Four cohort studies were identified; three of them could be included
Project	in the dose-response meta-analysis.

*One study was missed by the 2005 SLR

Table 71 Summary of results of the dose response meta-analysis of ethanol from liquor intake and endometrial cancer

Endometrial cancer							
	SLR 2005*	Continuous Update Project					
Studies (n)	-	3					
Cases (n)	-	3197					
Increment unit used	-	Per 10g/day					
Overall RR (95%CI)	-	1.05 (0.87-1.25)					
Heterogeneity (I ² ,p-value)	-	76.1%, p=0.015					

*No meta-analysis was conducted in the Second Expert Report

WCRF_ Code	Author	Year	Study Design	Study Name	Cancer Outcome	SLR 2005	CUP dose- response meta- analysis	CUP HvL forest plot	Estimated values	Exclusion reasons
END00292	Fedirko	2012	Prospective Cohort study	European Prospective Investigation into Cancer and Nutrition	Incidence	No	Yes	Yes	Rescale continuous values	-
END00252	Yang	2011	Prospective Cohort study	National Institute of Health - American Association of Retired Persons Diet and Health Study	Incidence	No	Yes	Yes	Mid-exposure values	
END00222	Setiawan	2008	Prospective Cohort study	Multiethnic Cohort Study	Incidence	No	Yes	Yes	Person years and mid-exposure values	
END00224	Loerbroks	2007	Case Cohort Study	Netherlands Cohort Study	Incidence	No	No	Yes	-	Only two categories (yes vs no)
END00041	Gapstur	1993	Prospective Cohort study	Iowa Women Health Study	Incidence	No	No	Yes	-	Only two categories

 Table 72 Inclusion/exclusion table for meta-analysis of ethanol from liquor intake and endometrial cancer

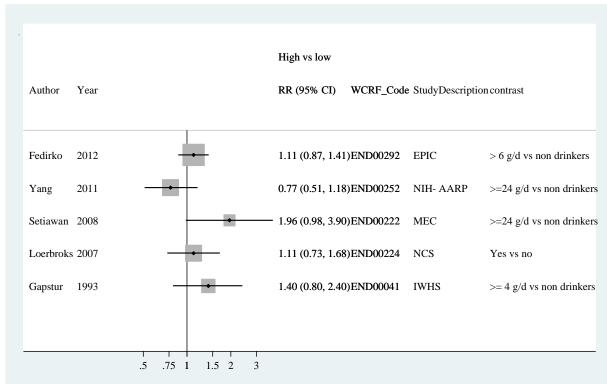
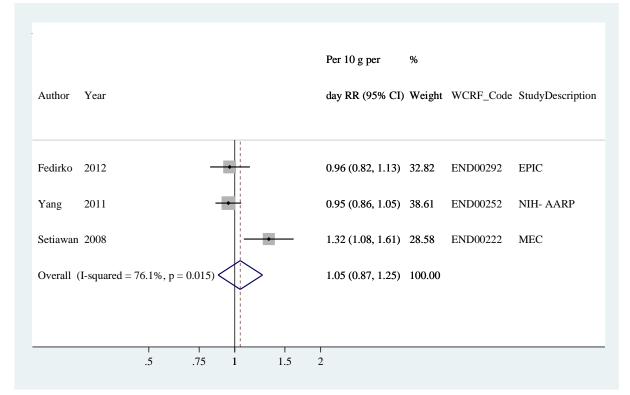
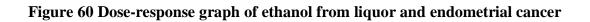
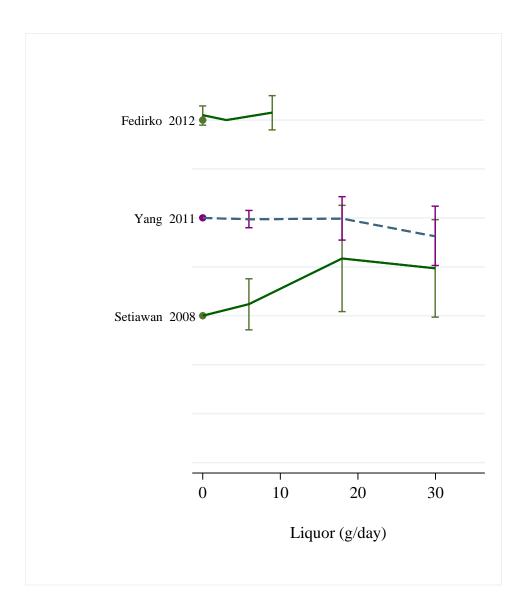





Figure 58 Highest versus lowest forest plot of ethanol from liquor intake and endometrial cancer

Figure 59 Dose-response meta-analysis of ethanol from liquor and endometrial cancer - per 10 g/day

5.5.3 Folate (Dietary only)

Methods

Up to December 2012, three cohort studies were identified. Two of three studies were identified during the Continuous Update Project. One study (Jain et al., 2000) was superseded by a study of Kabat et al in 2008 in the Canadian National Breast Cancer Screening Study and was excluded from the analysis. The Iowa Women Health Study (Uccella et al., 2011) reported results for type 1 and type 2 endometrial cancers. Only results of type 1 are included in dose-response meta-analysis because it includes adenocarcinomas, the most frequent histology in endometrial cancer. Two of the three studies had been included in the dose-response meta-analysis. The increment used was 50 μ g/day.

Main results

The summary RR per 50 µg /day was 1.00 (95% CI: 0.97-1.02) for all studies combined.

Heterogeneity

There was no heterogeneity ($I^2 = 0\%$, $P_{heterogeneity} = 0.78$).

Conclusion from the Second Expert Report

No meta-analysis was conducted.

Table 73 Studies on	dietary f	folate id	dentified i	n the	CUP
Table 75 Studies on	unctary	ionate ne	acminicu i	II UIC	

Author, year	Country	Study name	Cases	Years of follow up	RR	LCI	UCI	Contrast
Uccella, 2011	USA	Iowa Women Health Study (Type 1 endometrial cancer)	471	20	1.09	0.79	1.52	>373.7 vs. <225.1 µg/d
Uccella, 2011	USA	Iowa Women Health Study (Type 2 endometrial cancer)	71	20	1.34	0.55	3.23	>373.7 vs. <225.1 µg/d
Kabat, 2008	Canada	Canadian National Breast Cancer Screening Study	426	16.4	0.79	0.55	1.13	>400 vs. <236 µg /d

Table 74 Overall evidence on dietary folate and endometrial cancer

	Summary of evidence
SLR 2005	Only one cohort study was identified.
Continuous Update	Two cohort studies were identified during the CUP. The results from
Project	the two studies were included in the meta-analysis. None of the
	studies reported significant associations.

Table 75 Summary of results of the dose response meta-analysis of dietary folate and endometrial cancer

Endometrial cancer incidence							
	SLR 2005*	Continuous Update Project					
Studies (n)	-	3					
Cases (n)	-	1189					
Increment unit used	-	50 µg /day					
Overall RR (95%CI)	-	1.00 (0.97-1.02)					
Heterogeneity (I ² ,p-value)	-	0%, p=0.78					

*No meta-analysis was conducted in the Second Expert Report

WCRF code	Author	Year	Study design	Study name	Cancer	SLR	CUP	CUP H vs.	Estimated values	Exclusion
					outcome	2005	dose-	L forest		reason
							response	plot		
END00271	Uccella	2011	Prospective	Iowa Women's	Incidence	No	Yes	Yes	Mid-exposure values	-
			Cohort study	Health Study	(only type 1					
					endometrial					
					cancer)					
END00247	Kabat	2008		Canadian	Incidence				Mid-exposure values	-
			Prospective	National Breast		No	Yes	Yes		
			Cohort Study	Cancer		NO	res	res		
				Screening Study						
END00009	Jain	2000	Casa ashart	National Breast	Incidence				-	Superseded by
			Case-cohort	Cancer		Yes	No	No		Kabat et al.,
			Study	Screening Study						2008

Table 76 Inclusion/exclusion table for meta-analysis of dietary folate and endometrial cancer

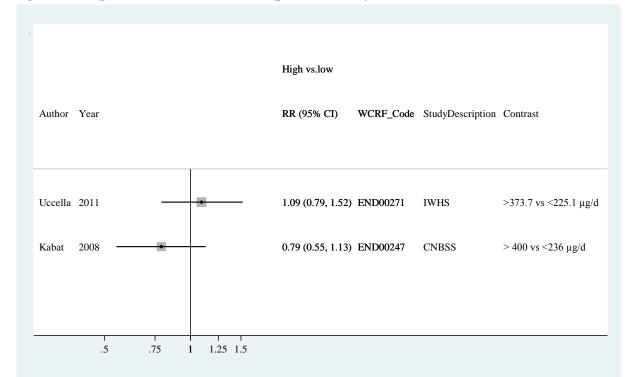
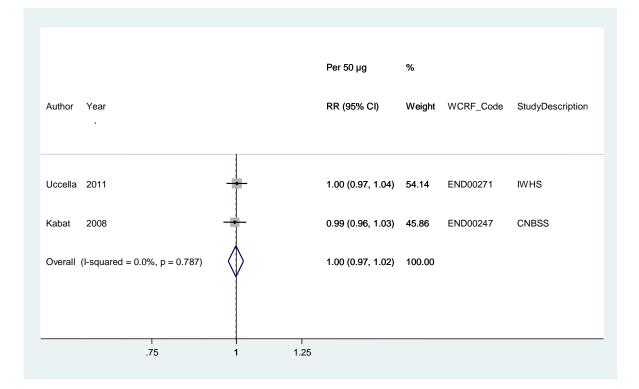
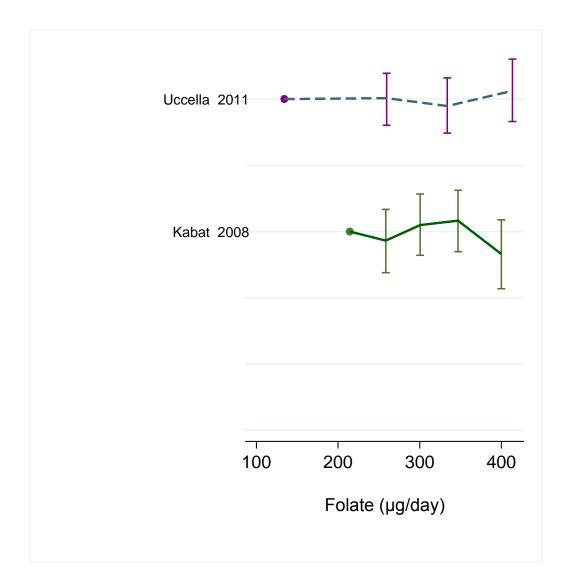




Figure 61 Highest versus lowest forest plot of dietary folate and endometrial cancer

Figure 63 Dose-response graph of dietary folate and endometrial cancer

5.5.13 Multivitamins

Methods

Up to December 2012, three cohort studies were identified during the Continuous Update Project. No study was identified in the SLR 2005. One study (Cui, 2011) reported the number of supplements used per week in a categorical variable which was converted to binary variable (yes vs. no) to be comparable with the other studies included in the analysis using the Hamling method (Hamling et al, 2008). Only high versus lowe comparison of users vs non users was possible.

Main results

The summary RR when comparing multivitamin intake with no intake, was 1.03 (95% CI: 0.93- 1.13, $I^2 = 0\%$, $P_{heterogeneity} = 0.43$) for all studies combined.

Heterogeneity

There was no evidence of heterogeneity across the limited number of published studies ($I^2 = 0\%$, $P_{heterogeneity} = 0.43$).

Conclusion from the Second Expert Report

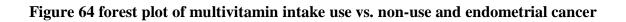
No study was identified during the SLR 2005.

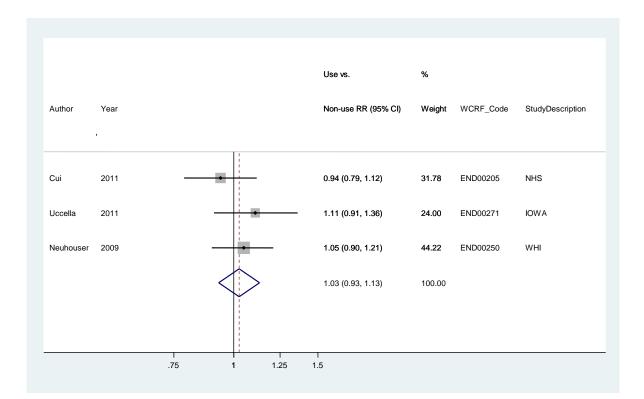
Table 77 S	Studies on	multivitamin	identified i	n the CUP
------------	------------	--------------	--------------	-----------

Author, year	Country	Study name	Cases	Years of follow up	RR	LCI	UCI	Contrast
Cui, 2011	USA	Nurses' Health Study	669	26	1.09	0.69	1.73	10 pills/week vs. none
Uccella, 2011	USA	Iowa Women's Health Study	542	20	1.11	0.91	1.36	User vs non-user
Neuhouser 2009	USA	Women's Health Initiative Dietary Modification and Observation al study	912	8	1.05	0.90	1.21	yes vs. no

Table 78 Overall evidence on multivitamin intake and endometrial cancer

	Summary of evidence
SLR 2005	No study was identified during the SLR 2005.
Continuous Update Project	Three cohort studies were identified; all were included in the dose- response meta-analysis. None of the studies reported significant associations.


Table 79 Summary results of meta-analysis of multivitamin intake (use vs. non-use) and endometrial cancer


Endometrial cancer incidence								
	SLR 2005*	Continuous Update Project						
Studies (n)	-	3						
Cases (n)	-	2123						
Increment unit used	-	Use vs. non-use						
Overall RR (95%CI)	-	1.03 (0.93 - 1.13)						
Heterogeneity (I ² ,p-value)	-	0 %, p=0.43						

*No meta-analysis was conducted in the SLR 2005

WCRF	Author	Year	Study design	Study name	Cancer	SLR	CUP	CUP Yes	Estimated values	Exclusion
code					outcome	2005	dose-	vs. No forest		reason
							response	plot		
END00205	Cui	2011	Prospective	Nurses' Health	Incidence	No	No	Yes	Supplements/week	
			Cohort study	Study (NHS)					rescaled to use vs	-
									non-use	
END00271	Uccella	2011	Prospective	Iowa Women's	Incidence	No	No	Yes		
			Cohort study	Health Study	(only type1					
					endometrial				-	-
					cancer)					
END00250	Neuhouser	2009	Prospective	Women's Health	Incidence	No	No	Yes		-
			Cohort study	Initiative					-	

Table 80 Inclusion/exclusion table for meta-analysis of multivitamin intake and endometrial cancer

5.7.5 Total Isoflavones

Methods

Up to December 2012, reports from three case-control studies and one cohort study were identified; one case-control study and the only cohort study where identified during the CUP. The CUP meta-analysis included two case-control studies. The dose-response results are presented for an increment of 10000 mcg of total isoflavones intake per day.

A study among Chinese women living in Shanghai reported no association between total isoflavones consumption and endometrial cancer. This study was excluded from the dose-response meta-analysis due to the high intake values of total isoflavones that made impossible to compare this study with other populations.

Main results

The summary RR per 1000 mcg per day was 0.87 (95% CI: 0.78-0.97; $I^2 = 0\%$, P_{heterogeneity}=0.927).

The only cohort study identified reported a protective association between total isoflavones intake and endometrial cancer (0.87; 95% CI: 0.78-0.97, Ptrend=0.02)

Heterogeneity

There was high heterogeneity across the limited number of published studies ($I^2=0\%$, p=0.927).

Comparison with the Second Expert Report

There was no meta-analysis in the Second Expert Report.

Published meta-analysis

There is no published meta-analysis in this topic

Table 81 Studies on total isoflavones intake identified in the CUP

Author, year	Country	Study name	Cases	Years of follow up	RR	LCI	UCI	Contrast
Ollberding, 2012	USA	Multiethnic Cohort study	489	13.6	0.66	0.47	0.90	>=7.82 mg kcal/day
Bandera, 2009	USA	The Estrogen, Diet, Genetics, and Endometrial study	424 cases & 398 controls	-	0.80	0.50	1.27	>666 mcg/ kcal per day vs 50.0 g/d

Table 82 Overall evidence on total isoflavones intake and endometrial cancer

	Summary of evidence
SLR	Two case-control studies were identified during the SLR. One study reported on Chinese woman in Shanghai and found no association between total isoflavones intake and endometrial cancer. The second study reported on US non-Asian women and found a protective effect of total isoflavones and endometrial cancer risk.
Continuous Update	One cohort study and one case-control study were identified. The
Project	cases-control study was included in the meta-analysis. Overall, two
	case-control studies were included in the CUP meta-analysis

Table 83 Summary of results of the dose response meta-analysis of total isoflavones intake and endometrial cancer

	Endometrial cancer	
	SLR*	Continuous Update Project
Studies (n)	-	2
Cases (n)	-	902
Increment unit used	-	Per 1000 mcg/day
Overall RR (95%CI)	-	0.87 (0.78-0.97)
Heterogeneity (I ² ,p-value)	-	0%, p=0.927

*No meta-analysis was conducted in the Second Report

Table 84 Inclusion/exclusion	table for meta-analysi	s of total isoflavones	s intake and end	ometrial cancer
	table for meta-analysi	s of total isofia office	s mitake and chu	Unicular cancer

WCRF_ Code	Author	Year	Study Design	Study Name	Cancer Outcome	SLR	CUP dose- response meta- analysis	CUP HvL forest plot	Estimated values	Exclusion reasons
END00265	Ollberding	2012	Prospective Cohort study	Multiethnic Study	Incidence	No	No	No	-	Cohort study (all other studies are case-control studies)
ENDXXXX	Bandera	2009	Case-Control study	The Estrogen, Diet, Genetics, and Endometrial study	Incidence	Yes	Yes	Yes	Mid-exposure values	
END00011	Xu	2004	Case-Control study	Shanghai Cancer Registry	Incidence	Yes	No	Yes	Mid-exposure values	Intake ranges not comparable with non-Asian populations
END00010	Horn-Ross	2003	Case-Control study	San Francisco Bay Study	Incidence	Yes	Yes	Yes	Mid-exposure values	

Figure 65 Highest versus lowest forest plot of total isoflavones intake and endometrial cancer

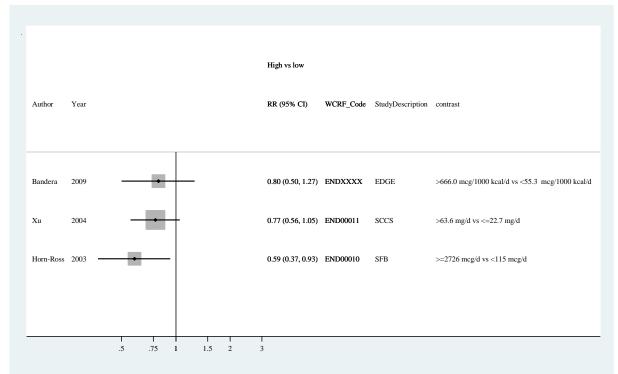
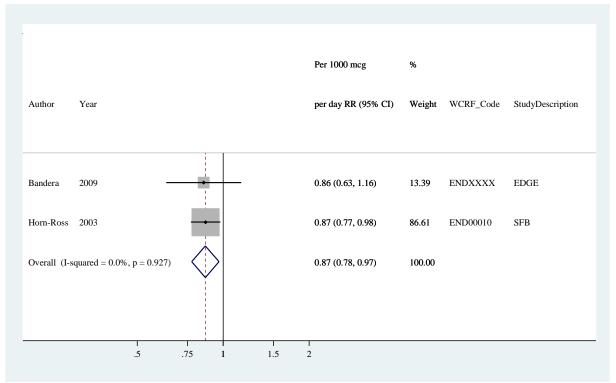



Figure 66 Dose-response meta-analysis of total isoflavones and endometrial cancer - per 10 g/day

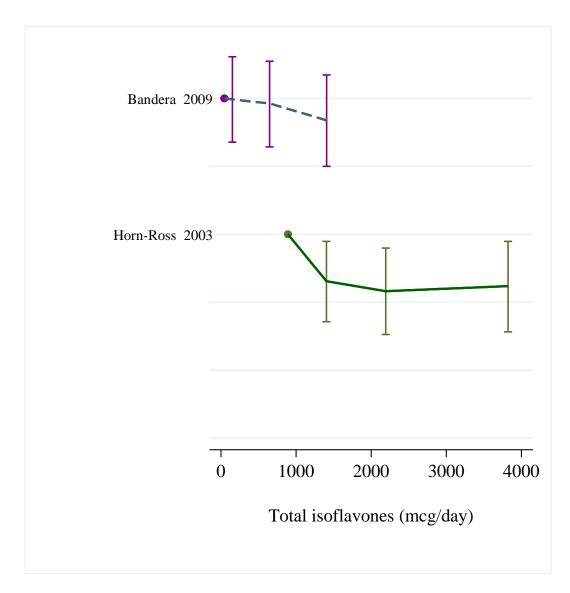


Figure 67 Dose-response graph of total isoflavones and endometrial cancer

6 Physical activity

6.1.1.1 Occupational physical activity

Methods

Five cohort studies were identified on occupational physical activity and endometrial cancer risk up to 2012, two of which were identified in the CUP. Dose-response analyses were not possible because of the differences in assessing occupational physical activity across studies. All studies were included in a highest versus lowest meta-analysis.

Main results

The summary RR for the highest vs. the lowest category of occupational physical activity reported in the articles 0.79 (95% CI: 0.71-0.88, I^2 = 18.4%, p_{heterogeneity}=0.97, n=5). There was no evidence of publication bias with Egger test (p= 0. 946) among the limited number of studies.

In sensitivity analysis of the influence of individual studies, the relative risk for the highest vs. the lowest category of occupational physical activity ranged from 0.76 (95% CI: 0.70-0.84) when a Swedish study by Friberg et al. 2006 was excluded to 0.81(95% CI: 0.67-0.97) when another Swedish study by Moradi et al.1998 was excluded.

All studies except two (Moradi, 1998; Weiderpass, 2001) controlled for BMI. Effect modification by BMI was additionally explored in the three other studies. No significant differences in associations across BMI levels were observed in two of the studies (Friberg, 2006; Friedenreich, 2007). In one study (Furberg, 2003) occupational physical activity was especially protective in obese women (P interaction: 0.17).

Heterogeneity

There was low heterogeneity in the analysis, $I^2=18.4\%$, p_{heterogeneity}=0.297.

Conclusion from the Second Expert Report

A meta-analysis of three cohort studies showed that occupational physical activity was inversely related to endometrial cancer risk.

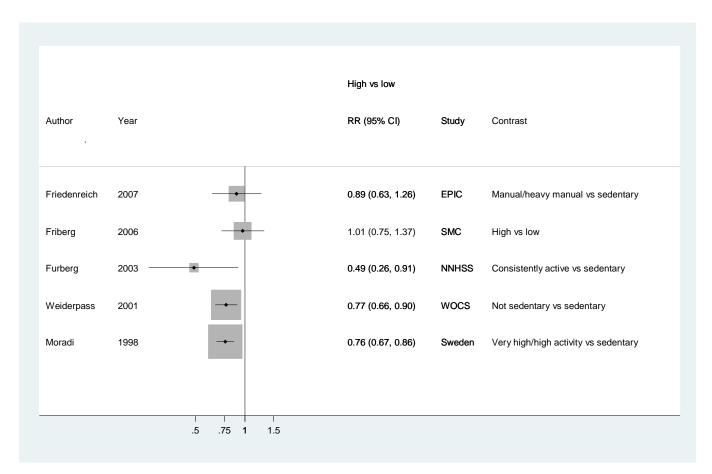
The Second Expert Report concluded that physical activity of all types probably protects against endometrial cancer risk.

Author/year	Country	Study name	Cases	Years of follow-	RR	LCI	UCI	Contrast
				up				
Friedenreich, 2007	Europe	EPIC	689	6.6	0.89	0.63	1.26	Manual/heavy manual vs. sedentary
Friberg, 2006	Sweden	Swedish Mammography Cohort	225	7	1.01	0.75	1.37	High vs. low

Table 85 Studies on occupational physical activity identified in the CUP

Table 86 Overall evidence on occupational physical activity and endometrial cancer

	Summary of evidence
2005 SLR 2005	Three cohort studies, all conducted in Scandinavian countries reported
	that greater occupational physical activity was associated with decreased
	risk of endometrial cancer.
Continuous	Two additional cohort studies reported no significant association of
Update Project	occupational physical activity and endometrial cancer.


Table 87 Summary of results of the highest vs. lowest meta-analysis of occupationalphysical activity and endometrial cancer

Endometrial cancer							
	SLR 2005	Continuous Update Project					
Studies (n)	3	5					
Cases (n)	4912	5826					
RR (95% CI)	0.75 (0.68-0.83)	0.79 (0.71-0.88)					
Contrast	Highest vs. Lowest	Highest vs. Lowest					
Heterogeneity (I ² , p-value)	0% p=0.389	18.4%, p= 0.297					

WCRF code	Author	Year	Study	Study name	Cancer	SLR	CUP	Estimated	Exclusion
			design		outcome	2005	HvL	values	reason
							forest		
							plot		
END00245	Friedenreich	2007	Prospective cohort study	European Prospective Investigation into Cancer	Incidence	No	Yes	-	-
END00283	Friberg	2006	Prospective cohort study	Swedish Mammography Cohort	Incidence	No	Yes	-	-
END00014	Furberg	2003	Prospective cohort study	Cohort from Norwegian National Health Screening	Incidence	Yes	Yes	-	-
END00111	Weiderpass	2001	Prospective cohort study	Women Occupational Cancer Study	Incidence	Yes	Yes	Relative risks estimated from Standardised incidence rates	-
END00083	Moradi	1998	Prospective cohort study	Census and Cancer Environment Register	Incidence	Yes	Yes	Relative risks recalculated because referent category was the highest level	-

 Table 88 Inclusion/exclusion table for meta-analysis of occupational physical activity and endometrial cancer

Figure 68 Highest versus lowest forest plot of occupational physical activity and endometrial cancer

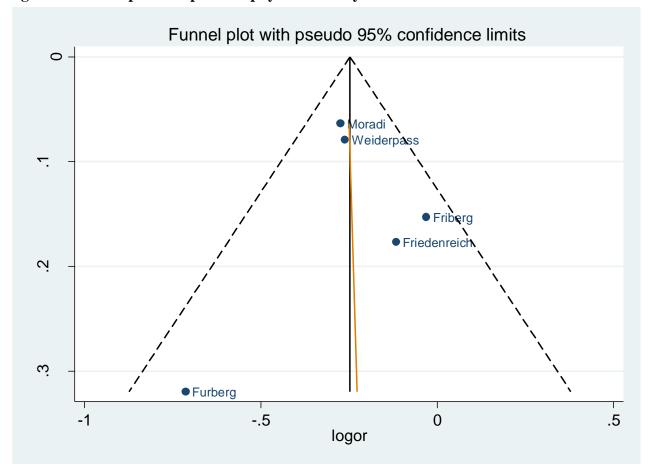


Figure 69 Funnel plot occupational physical activity and endometrial cancer

6.1.1.2 Recreational physical activity

Methods

A total of 9 cohort studies (10 publications) have been published on recreational (or leisure time) physical activity and endometrial cancer risk up to 2012, five (six publications) of which were identified in the CUP. Dose-response analyses were not possible because different measures of physical activity were used in the studies.

A highest versus lowest meta-analysis was conducted. One study reported only age-adjusted results (Folsom et al, 2003). All other studies reported multivariable adjusted results. First, we included in the analyses multivariable results not adjusted by BMI and three studies (Fuberg et al. 2003, Schouten et al. 2004, and Friedenreich et al. 2007) that provided the multivariable adjusted results including BMI as covariable.

Second, the meta-analysis was conducted including only all the results that were adjusted for BMI. Two studies did not provide results adjusted for BMI and were excluded (Folsom et al. 2003, Terry et al. 1999).

Main results

The summary RR for the highest vs. the lowest category of recreational physical activity was 0.73 (95% CI: 0.58-0.93, $I^2=75.9\%$, $p_{heterogeneity}=<0.0001$, n=9) for all studies combined.

In analyses restricted to studies that adjusted for BMI, the RR for the highest vs. the lowest category of recreational physical activity was 0.80 (95% CI: 0.69-0.92, $I^2=21.2\%$, p_{heterogeneity}=0.268, n=7)

In sensitivity analysis of the influence of individual studies, analyses the relative risk for the highest vs. the lowest category of recreational physical activity ranged from 0.69 (95% CI: 0.54-0.88) when the Iowa Women Health Study (Folsom et al. 2003) was excluded to 0.79 (95% CI: 0.63-0.98) when NIH-AARP was excluded.

Six studies investigated effect modification for BMI. Four studies reported no significant effect modification (Gierach, 2009; Friedenreich, 2007; Friberg, 2006; Schouten, 2004). In the WHEL study (Conroy, 2009) compared to normal weight active women the relative risks of endometrial cancer were 1.17 (95% CI: 0.77-1.77) for normal weight inactive women , and in overweight women, these were1.60 (95% CI: 1.01-2.54) for overweight active women and 1.85 (95% CI: 1.26-2.72) for overweight inactive women. In the Cancer Prevention Study II Nutrition Cohort, the inverse relationship with physical activity was seen only among overweight or obese women (trend p = 0.003) and not in normal weight women (trend p = 0.51) (heterogeneity of trends p = 0.01). Compared to normal weight women with less than 7 MET-hr/week of activity, the hazard ratios were (1.01; 95% CI: 0.69-1.48) for normal weight women with the higher physical activity level and 0.59 (95% CI: 0.42-0.83) for obese women with the higher activity level.

The summary RR for the highest vs. the lowest category of recreational physical activity was 0.73 (95% CI: 0.58-0.93, I2=75.9%, pheterogeneity=<0.0001, n=9) for all studies combined.

In analyses restricted to studies that adjusted for BMI, the RR for the highest vs. the lowest category of recreational physical activity was 0.80 (95% CI: 0.69-0.92, I2=21.2%,p Heterogeneity=0.268, n=7).

Heterogeneity

There was high heterogeneity in the analysis for all studies combined, $I^2=75.9\%$, $p_{heterogeneity}=<0.0001$. There was no evidence of publication bias with Egger test (p: 0.338) and the visual inspection of the funnel plot indicates that the smallest study (Terry et al, 1999) reported an inverse association outside the expected random fluctuation. Exclusion of the study by Terry et al, 1999 from the analysis did not substantially modify the summary estimate.

Low heterogeneity was observed in the meta-analysis of results adjusted for BMI ($I^2=21.2$ %, $p_{heterogeneity}=0.268$).

Conclusion from the Second Expert Report

In the systematic review of the 2007 expert report it was judged that physical activity (all types) probably decreases endometrial cancer risk.

Published meta-analysis

A meta-analysis of cohort studies on recreational activity was recently published (Moore et al, 2010). It includes the same studies that were included in the CUP and therefore the results are the same.

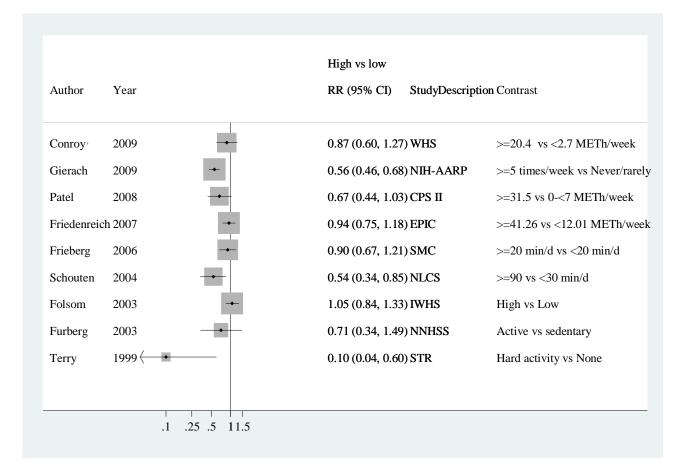
A narrative review of cohort and case-control studies concluded that about 1 hour daily of moderate-intensity activity appears to confer a benefit for endometrial cancer risk, and that there is no consistent evidence regarding the effect for different population sub-groups including different BMI categories and menopausal status (Friedenreich et al, 2010).

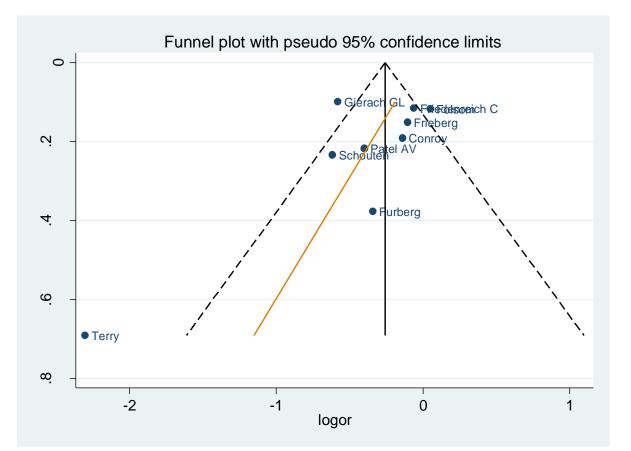
Author/year	Country	Study name	Cases	Years of	RR	LCI	UCI	Contrast
				follow-				
				up				
Gierach, 2009	USA	NIH-American Association of Retired Persons	1052	3 yrs(cases) 7 yrs (non- cases)	0.56	0.46	0.68	>=5 times/week vs. never/rarely
Conroy, 2009	USA	Women Health Study	264	8.8	1.15	0.79	1.67	≥20.4 vs. <2.7 MET- h/week
Patel, 2008	USA	Cancer Prevention Study II Nutrition Cohort	466	Baseline: 1992 End of follow- up: 2003	0.67	0.44	1.03	>=31.5 vs. 0- <7 METh/week
Friedenreich, 2007	Europe	European Prospective Investigation into Cancer	689	6.6	0.94	0.75	1.18	>=41.26 vs. <12.01 METh/week
Schouten, 2006	Netherlands	The Netherland Cohort Study	226	9.3	0.54	0.34	0.85	90 min vs. less than 30 min. per day
Friberg, 2006	Sweden	Swedish Mammography Cohort	225	7	0.90	0.67	1.21	>20 min/d vs. <20 min/d

Table 89 Studies on recreational physical activity identified in the CUP

Table 90 Overall evidence on recreational physical activity and endometrial cancer

	Summary of evidence
2005 SLR 2005	Four cohort studies reported on recreational physical activity and
	endometrial cancer, from which two studies reported significant inverse
	associations, one reported inverse but not significant association and
	one study did not find any association.
Continuous	Six additional cohort studies reported on recreational physical activity and
Update Project	endometrial cancer, and two found significant inverse association. One of
	these (Schouten et al, 2006) presented results already published in 2004.
	The other studies reported no significant inverse associations.


Table 91 Summary of results of the highest vs. lowest meta-analysis of recreational physical activity and endometrial cancer


Endometrial cancer							
	SLR 2005	Continuous Update Project					
Studies (n)	4	9					
Cases (n)	2696	3600					
RR (95% CI)	0.57 (0.30-1.09)	0.73 (0.58-0.93)					
Contrast	Highest vs. Lowest	Highest vs. Lowest					
Heterogeneity (I ² , p-value)	82.2% p=0.001	75.9%, p=<0.0001					
Sensitivity analysis of results	-						
adjusted by BMI							
Studies (n)	-	7					
Cases (n)	-	3052					
RR (95% CI)	-	0.80 (0.69-0.92)					
Contrast	-	Highest vs. Lowest					
Heterogeneity (I2, p-value)	-	21.2 %, p=0.268					

WCRF code	Author	Year	Study design	Study name	Cancer outcome	SLR 2005	CUP HvL forest plot	Estimated values	Exclusion reason
END00218	Conroy	2009	Prospective cohort study	Women Health Study	Incidence	No	Yes	RR and CI recalculated because referent was highest level	-
END00216	Gierach	2009	Prospective cohort study	NIH-American Association of Retired People	Incidence	No	Yes	-	-
END00227	Patel	2008	Prospective cohort study	Cancer Prevention Study II and Nutrition	Incidence	No	Yes	-	-
END00245	Friedenreich	2007	Prospective cohort study	European Prospective Investigation into Cancer	Incidence	No	Yes	-	-
END00283	Friberg	2006	Prospective cohort study	Swedish Mammography Cohort	Incidence	No	Yes	-	-
END00246	Schouten	2006	Case-cohort study	The Netherland Cohort Study	Incidence	No	No	-	Used Schouten et al, 2004 with more data
END00119	Schouten	2004	Case-cohort study	The Netherland Cohort Study	Incidence	Yes	Yes	-	-
END00014	Furberg	2003	Prospective cohort study	Cohort from Norwegian National Health Screening	Incidence	Yes	Yes	-	-
END00160	Folsom	2003	Prospective cohort study	Iowa Women Health Study	Incidence	Yes	Yes	-	-
END00060	Terry	1999	Prospective cohort study	Cohort from Swedish Twin Registry	Incidence	Yes	Yes	-	-

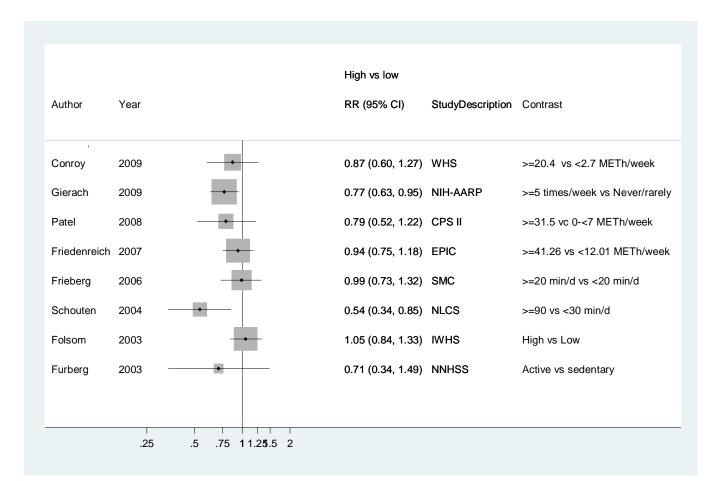

Table 92 Inclusion/exclusion table for meta-analysis of recreational physical activity and endometrial cancer

Figure 70 Highest versus lowest forest plot of recreational physical activity and endometrial cancer

Figure 71 Funnel plot recreational physical activity and endometrial cancer

Figure 72 Highest versus lowest forest plot of recreational physical activity and endometrial cancer after adjustment for BMI

6.1.1.4 Walking/biking (mainly for transportation)

Methods

Five cohort studies have been published on walking/biking (mainly for transportation) and endometrial cancer risk up to 2012, four of which were identified in the CUP. Dose-response analyses were not possible because different measures of walking/biking were used in the studies. A highest versus lowest meta-analysis was conducted.

Main results

The summary RR for the highest vs. the lowest category of walking/biking reported in the articles was 0.88 (95% CI: 0.69-1.14, $I^2=61.9\%\%$, $p_{heterogeneity}=0.033$, n=5).

In sensitivity analysis of the influence of individual studies, analyses the relative risk estimate ranged from 0.97 (95% CI: 0.79-1.19) when the Netherlands Cohort Study was excluded (Schouten al. 2006) was excluded to 0.81 (95% CI: 0.61-1.08) when the NIH-AARP was excluded (Gierach et al. 2009).

None of the studies reported effect modification by BMI.

Heterogeneity

There was high heterogeneity across study results, $I^2=61.9\%$, $p_{heterogeneity}=0.033$. This was due to the outlier result in the Netherlands cohort study (Schouten et al. 2006).

There was no evidence of publication bias with Egger test (p: 0.316) in the limited number of studies identified but visual inspection of the funnel plot indicates asymmetry due to a strong association observed in the Dutch study (Schouten et al. 2006).

Conclusion from the Second Expert Report

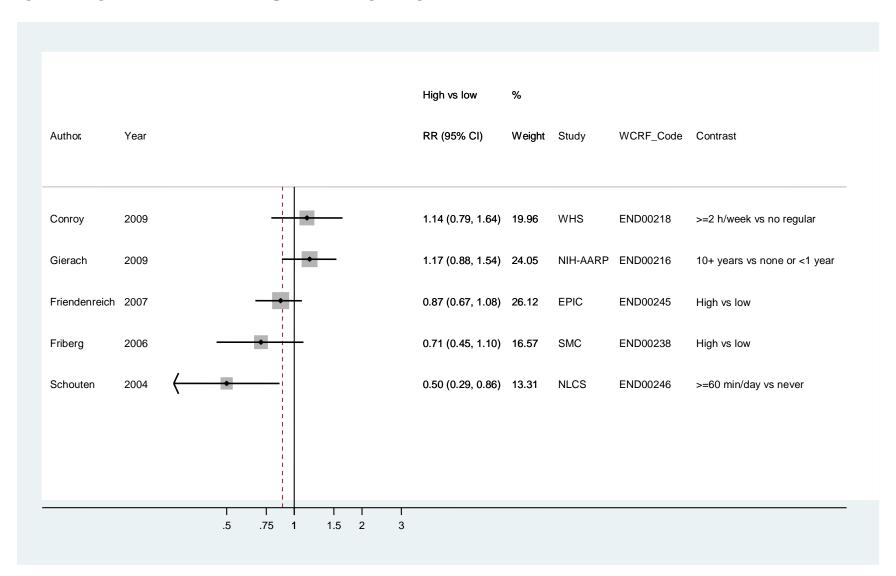
No meta-analysis was conducted. The Second Expert Report concluded that physical activity of all types probably protects against endometrial cancer risk.

Author/year	Country	Study name	Cases	Years of follow- up	RR	LCI	UCI	Contrast
Conroy, 2009	USA	Women Health Study	264	8.8	1.14	0.79	1.64	>=2 h/week vs. no regular
Gierach, 2009	USA	NIH-American Association of Retired Persons	1052	3 yrs(cases) 7 yrs (non- cases)	1.17	0.88	1.54	10+ years vs. none or <1 year walked/byke to work
Friedenreich, 2007	Europe	European Prospective Investigation into Cancer	689	6.6	0.87	0.67	1.08	High vs. low
Friberg, 2006	Sweden	Swedish Mammography Cohort	225	7	0.71	0.45	1.1	High vs. low

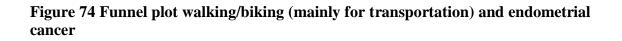
Table 93 Studies on walking/biking (mainly for transportation) identified in the CUP

Table 94 Overall evidence on walking/biking (mainly for transportation) and endometrial cancer

	Summary of evidence
2005 SLR 2005	A Dutch cohort study reported a significant inverse association between
	walking/biking (mainly for transportation) and endometrial cancer
Continuous	Four additional cohort studies were identified. None of them reported
Update Project	significant associations.


Table 95 Summary of results of the highest vs. lowest meta-analysis of walking/biking (mainly for transportation) and endometrial cancer

	Endometrial cancer	ſ
	SLR 2005*	Continuous Update Project
Studies (n)	_	5
Cases (n)		2456
RR (95% CI)		0.89 (95% CI: 0.69-1.14)
Contrast		Highest vs. Lowest
Heterogeneity (I ² , p-value)		61.9 %, p=0.033


*No meta-analysis was conducted for the Second Expert Report

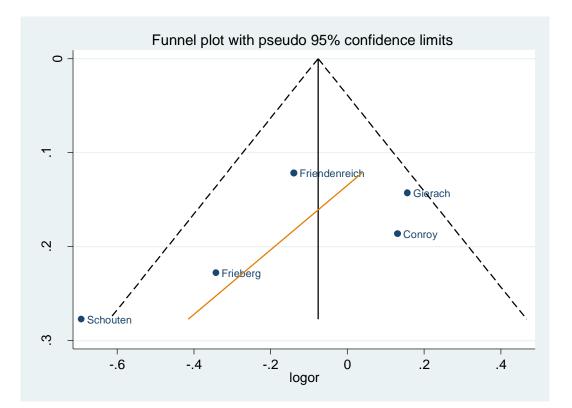

WCRF	Author	Year	Study design	Study name	Cancer	SLR	CUP	Estimated	Exclusion
code					outcome	2005	HvL	values	reason
							forest		
							plot		
END00218	Conroy	2009	Prospective	Women Health Study	Incidence	No	Yes	RR and CI	-
			cohort study					recalculated	
								because referent	
								was highest	
								level	
END00216	Gierach	2009	Prospective	NIH-American	Incidence	No	Yes	-	-
			cohort study	Association of Retired					
				People					
END00245	Friedenreich	2007	Prospective	European Prospective	Incidence	No	Yes	-	-
			cohort study	Investigation into					
				Cancer					
END00283	Friberg	2006	Prospective	Swedish	Incidence	No	Yes	-	-
			cohort study	Mammography Cohort					
END00119	Schouten	2004	Case-cohort	The Netherland Cohort	Incidence	Yes	Yes	-	-
			study	Study					

Table 96 Inclusion/exclusion table for meta-analysis of walking/biking (mainly for transportation) and endometrial cancer

Figure 73 Highest versus lowest forest plot of walking/biking and endometrial cancer

6.1.1.5 Exercise/sport

Methods

Three studies on incidence and one on mortality have been identified, one during the literature review for the SLR 2005 and three during the CUP. Dose-response analyses were not possible because of different measures used in the studies. A highest versus lowest meta-analysis was conducted. The study on mortality was excluded from the analysis.

Main results

The summary RR for the highest vs. the lowest level of exercise/sport was 0.81 (95% CI: 0.56-1.17, I^2 =66.2%, p_{heterogeneity}=0.052, n=3).

None of the studies reported effect modification by BMI.

The Japanese study with mortality for endometrial cancer as endpoint reported no association of sport activity with mortality for endometrial cancer (Khan et al, 2006).

Heterogeneity

There was evidence of high heterogeneity (I^2 =66.2 %, p_{heterogeneity}=0.052).

Conclusion from the Second Expert Report

No meta-analysis was conducted. The Second Expert Report concluded that physical activity of all types probably protects against endometrial cancer risk.

Table 97 Studies on exercise/sport identified in the CUP	Table 97 Stu	dies on exercis	e/sport identifi	ed in the CUP
--	--------------	-----------------	------------------	---------------

Author/y ear	Country	Study name	Cases	Years of follow-	RR	LCI	UCI	Contrast
Cui				up				
Patel,	USA	Cancer	466	Baseline:	0.61	0.46	0.8	Consistently
2008		Prevention		1992				high vs.
		Study II and		End of				none/low
		Nutrition		follow-				
				up: 2003				
Friberg,	Sweden	Swedish	225	7	0.99	0.73	1.32	High vs. low
2006		Mammography						-
		Cohort						
Khan, 2006	Japan	Japan	22	13.3	1.16	0.41	3.28	>=1-2
	_	Collaborative						hour/week vs.
		Cohort Study						seldom

Table 98 Overall evidence on exercise/sport and endometrial cancer

	Summary of evidence
2005 SLR 2005	One study did not find association between sport/exercise and
	endometrial cancer.
Continuous	Three cohort studies, two on incidence and one on mortality have been
Update Project	identified. Only one study on incidence reported a significant inverse
	association of sport/exercise activities and endometrial cancer.

Table 99 Summary of results of the highest vs. lowest meta-analysis of exercise/sport and endometrial cancer

	Endometrial canc	er
	SLR 2005*	Continuous Update Project
Studies (n)	-	3
Cases (n)		917
RR (95% CI)		0.81 (0.56-1.17)
Contrast		Highest vs. Lowest
Heterogeneity (I ² , p-value)		66.2%, p=0.052

*Only one study identified during the SLR 2005

WCRF code	Author	Year	Study design	Study name	Cancer outcome	SLR 2005	CUP HvL forest plot	Estimated values	Exclusion reason
END00227	Patel	2008	Prospective cohort study	Cancer Prevention Study II and Nutrition	Incidence	No	Yes	-	-
END00242	Friberg,	2006	Prospective cohort study	Swedish Mammography Cohort	Incidence	No	Yes	-	-
END00238	Khan	2006	Prospective cohort study	Japan Collaborative Cohort Study	Mortality	No	No		Mortality as endpoint
END00246	Schouten	2004	Case-cohort	The Netherlands Cohort Study	Incidence	Yes	Yes	-	

Table 100 Inclusion/exclusion table for meta-analysis of exercise/sport and endometrial cancer

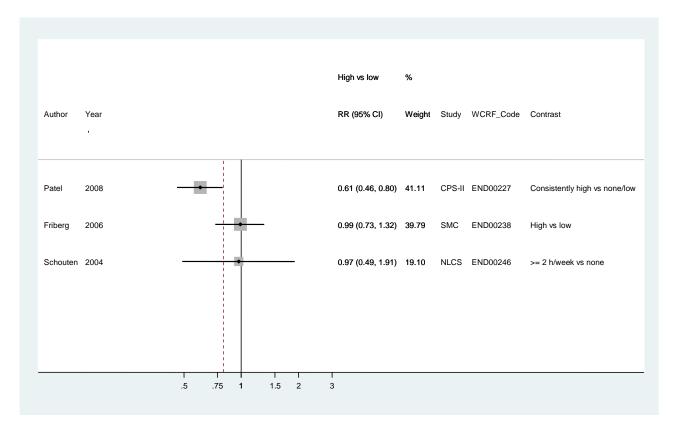


Figure 75 Highest versus lowest forest plot of exercise/sport and endometrial cancer

6.1.3 Vigorous activity

Methods

Four cohort studies have been published on vigorous physical activity and endometrial cancer risk up to 2012, three of which were identified in the CUP. Dose-response analyses were not possible because different measures of physical activity were used in the studies. A highest versus lowest meta-analysis was conducted.

Main results

The summary RR for the highest vs. the lowest category of vigorous physical activity reported in the articles was 0.88 (95% CI: 0.61-1.26, $I^2=85.0$ % p_{heterogeneity}=<0.0001, n=4).

In the NIH-AARP Diet and Health Study (Gierach, 2009), there was some suggestion of an interaction for BMI (p for interaction: 0.12). The relationship of vigorous physical activity with endometrial cancer was not significant in normal weight women (P for trend: 0.92) but it was significant for all the levels of vigorous physical activity considered (from 1-3 times/month up to 5+ times/week) compared to never/rarely in obese women. A significant trend was observed in obese women (p for trend<0.0001). The three other studies don't report or don't explore effect modification.

Heterogeneity

There was high heterogeneity across study results, $I^2=85.0$ %, $p_{heterogeneity}=<0.0001$.

Conclusion from the Second Expert Report

No meta-analysis was conducted. The Second Expert Report concluded that physical activity of all types probably protects against endometrial cancer risk.

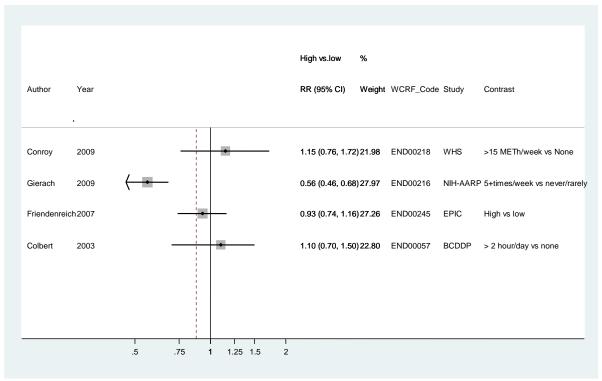
Author/year	Country	Study	Cases	Years of	RR	LCI	UCI	Contrast
		name		follow-				
				up				
Conroy, 2009	USA	Women	264	8.8	1.15	0.76	1.72	>15 MET
		Health						h/week vs.
		Study						None
Gierach, 2009	USA	NIH-	1052	3	0.56	0.46	0.68	5<
		American		yrs(cases)				times/week
		Association		7 yrs (vs.
		of Retired		non-				never/rarely
		Persons		cases)				
Friedenreich,	Europe	European	689	6.6	0.93	0.74	1.16	High vs. low
2007		Prospective						
		Investigation						
		into Cancer						

Table 101 Studies on vigorous physical activity identified in the CUP

Table 102 Overall evidence on vigorous physical activity and endometrial cancer

	Summary of evidence
2005 SLR 2005	One cohort study reported no association
Continuous	Three additional cohort studies were identified. Only one study reported
Update Project	significant inverse association.

Table 103 Summary of results of the highest vs. lowest meta-analysis of vigorous physical activity and endometrial cancer


Endometrial cancer								
	SLR 2005*	Continuous Update Project						
Studies (n)	-	4						
Cases (n)		2258						
RR (95% CI)		0.88 (0.61-1.26)						
Contrast		Highest vs. Lowest						
Heterogeneity (I ² , p-value)		85.0 %, p=<0.0001						

*No meta-analysis was conducted for the SLR 2005

WCRF code	Author	Year	Study design	Study name	Cancer	SLR	CUP	Estimated	Exclusion
					outcome	2005	HvL	values	reason
							forest		
							plot		
END00218	Conroy	2009	Prospective	Women Health Study	Incidence	No	Yes	-	-
			cohort study						
END00216	Gierach	2009	Prospective	NIH-American	Incidence	No	Yes	-	-
			cohort study	Association of Retired					
				People					
END00245	Friedenreich	2007	Prospective	European Prospective	Incidence	No	Yes	-	-
			cohort study	Investigation into Cancer					
END00057	Colbert	2003	Prospective	Breast Cancer Diagnosis	Incidence	Yes	Yes	 _	-
	Colocit	2003	*	e	mendence	105	105	_	_
			cohort study	Demonstration Project					

Table 104 Inclusion/exclusion table for meta-analysis of vigorous physical activity and endometrial cancer

Figure 76 Highest versus lowest forest plot of vigorous physical activity and endometrial cancer

6.2 Sitting time

Methods

Three studies were identified, all during the CUP. Dose-response analyses were not possible because different measures were used in the studies. A highest versus lowest meta-analysis was conducted.

Main results

The summary RR for the highest vs. the lowest level of time spent sitting was 1.46 (95% CI: 1.21-1.76, $I^2=0\%$, $p_{heterogeneity}=0.827$, n=3). After adjustment for BMI, the relative risks estimates were attenuated; in one study the relative risk estimate remained significant (Friberg et al, 2006) and in another study the trend remained significant (Moore et al, 2010).

Heterogeneity

There was no evidence of heterogeneity ($I^2=0$ %, $p_{heterogeneity}=0.827$).

Conclusion from the Second Expert Report

No cohort study was identified in the SLR 2005.

Table 105 Studies on sitting time identified in the CUP

Author/year	Country	Study name	Cases	Years	RR	LCI	UCI	Contrast
				of				
				follow-				
				up				
Moore,	USA	NIH-American	1052	3 yrs	1.45	1.1	1.92	9+h/day
2009		Association of		(cases)				vs. <3 h
		Retired		7yrs				
		Persons		(non-				
				cases)				
Patel,	USA	Cancer	466	Baseline:	1.4	1.03	1.89	6+ vs. <3
2008		Prevention		1992				hour/day
		Study II and		End of				-
		Nutrition		follow-				
				up: 2003				
Friberg, 2006	Sweden	Swedish	225	7	1.66	1.05	2.61	High vs.
_		Mammography						low
		Cohort						

Table 106 Overall evidence on sitting time activity and endometrial cancer

	Summary of evidence
2005 SLR 2005	No study identified during the SLR 2005.
Continuous	Three cohort studies reported on sitting time and endometrial cancer; all
update	of them found significant positive association between sitting time and
	endometrial cancer risk.

Table 107 Summary of results of the highest vs. lowest meta-analysis of sitting time and endometrial cancer

Endometrial cancer								
	SLR 2005*	Continuous Update Project						
Studies (n)	-	3						
Cases (n)		1579						
RR (95% CI)		1.46 (1.21-1.76)						
Contrast		Highest vs. Lowest						
Heterogeneity (I ² , p-value)		0%, p=0.827						

*No study identified during the Second Expert Report

WCRF code	Author	Year	Study design	Study name	Cancer outcome	SLR 2005	CUP HvL forest plot	Estimated values	Exclusion reason
END00286	Moore	2009	Prospective cohort study	NIH-American Association of Retired Persons	Incidence	No	Yes	-	-
END00227	Patel	2008	Prospective cohort study	Cancer Prevention Study II and Nutrition	Incidence	No	Yes	-	-
END00242	Friberg,	2006	Prospective cohort study	Swedish Mammography Cohort	Incidence	No	Yes	-	-

Table 108 Inclusion/exclusion table for meta-analysis of sitting time and endometrial cancer

Figure 77 Highest versus lowest forest plot of sitting time and endometrial cancer

8 Anthropometry

8.1.1 BMI

Methods

A total of 34 cohort studies (50 publications) have been published on BMI, at cohort enrolment, and endometrial cancer risk up to December 2012. Four studies were on endometrial cancer as second primary cancer and were not included. From the 34 cohort studies, 18 studies (24 publications) were identified in the CUP. Dose-response analyses were conducted per 5 units increase in BMI (kg/m²). Several studies used the second lowest category as a reference category due to limited number of cases in the lowest category and when this was the case the lowest category was excluded from the analyses in the linear dose-response analyses. We also did a sensitivity analysis not excluding the lowest category, but converting the risk estimates using the method by Hamling et al, 2008, so that the lowest category was the reference. This method was also used for the nonlinear dose-response analysis. For the analysis stratified by hormone replacement therapy use, most studies reported results for ever vs. never users. For this reason we pooled the results for former and current users in one study (which did not report results for ever users) using a fixed effects model (Chang et al, 2007), so that the study could be included in the analysis of ever vs. never users.

Main results

The summary RR per 5 units increase in BMI (kg/m²) was 1.50 (95% CI: 1.42-1.59, $I^2=86.2\%$, p_{heterogeneity}<0.0001, n=26 studies, 25 risk estimates). In the sensitivity analysis using the converted risk estimates, the summary RR per 5 units increase in BMI was 1.56 (95% CI: 1.48-1.64, $I^2=79.8\%$, p_{heterogeneity}<0.0001). There was no evidence of publication bias with Egger's test, p=0.21, however, the funnel plot suggested asymmetry. There was evidence of nonlinearity, p_{nonlinearity}<0.0001, with a steeper increase in risk at higher BMI levels. Although there was some suggestion of a J-shaped curve with a slight increase in risk at very low BMI levels it is possible that this may be an artefact due to differing reference category levels as it can be seen in the scatter plot that there are no studies suggesting increased risk at low levels of BMI.

Additional analyses were conducted by menopausal status. Two studies reported results for both premenopausal and postmenopausal women and eight reported results only for postmenopausal women. In addition, two studies reported results stratified by age (Tornberg et al, 1994: \geq 55 vs. <55 years and Bjørge et al, 2006: 50-74 vs. 20-49 years) and one study reported results among women aged \geq 55 years (Schouten et al, 2004). The higher and lower age ranges were considered to be approximate indicators of postmenopausal and premenopausal status, respectively, and were included in these analyses. The summary RR per 5 units increase in BMI was 1.41 (95% CI: 1.37-1.45, I²=0%, p_{heterogeneity}=0.53, n=4) for premenopausal women and 1.51 (95% CI: 1.38-1.65, $I^2=91.9\%$, $p_{heterogeneity}<0.0001$, n=13) for postmenopausal women.

When we conducted analyses among two studies (Friedenreich, 2007 and Reeves, 2011) that also adjusted for waist-to-hip ratio, the summary RR was 1.28 (95% CI: 1.17-1.40, $I^2=45.9\%$, p_{heterogeneity}=0.17) per 5 units increase in BMI.

In additional subgroup analyses by hormone replacement therapy (HRT) use, the association was much stronger among never users of HRT than among ever users, summary RR = 1.73 (95% CI: 1.44-2.08, I^2 =87%) in never HRT users vs. 1.15 (95% CI: 1.06-1.25, I^2 =0%) among ever HRT users.

Heterogeneity

There was high heterogeneity, $I^2=89.5\%$, $p_{heterogeneity}<0.0001$.

Conclusion from the Second Expert Report

In the SLR of the 2007 Expert Report the evidence relating body fatness to increased endometrial cancer risk was considered convincing.

Published meta-analyses

A meta-analysis of 4 population-based case-control studies reported a summary RR of 1.10 (95% CI: 1.07-1.12) per 1 unit (Bergström et al, 2001).

A meta-analysis of 19 prospective studies reported a summary RR of 1.59 (95% CI: 1.50- 1.68, $I^2=77\%$, $p_{heterogeneity}<0.0001$) per 5 units increase in BMI (Renehan et al, 2008).

In an updated meta-analysis of 24 prospective studies, the summary RR per 5 units increase in BMI was 1.60 (95% CI: 1.52-1.68) (Crosbie et al, 2010).

Table 109 Studies on BMI identified in the CUP

Author/year	Country	Study	Cases	Years	RR	LCI	UCI	Contrast
		name		of				
				follow-				
				up				
Yang, 2013	USA	NIH-AARP	1312 type 1	9.4	2.93	2.62	3.28	≥30 vs. <30
		Diet and	138 type 2	years	1.83	1.27	2.63	≥30 vs. <30
		Health Study						
Yang, 2012	United	Million	1410	7.3	7.72	6.79	8.77	≥35 vs. <22.5
	Kingdom	Women's		years	1.87	1.77	1.96	Per 5 units
		Study						
Ollberding,	USA	Multiethnic	489	13.6	2.68	2.10	3.42	≥30 vs. <25
2012		Cohort Study		years				

Reeves, 2011	USA	Women's Health Initiative	806	7.8 years	1.76	1.41	2.19	≥30 vs. <25
Park, 2010	USA	Multiethnic Cohort Study	463	10.3 years	3.54	2.70	4.63	≥30 vs. <25
Dossus, 2010	Europe	European Prospective Investigation into Cancer and Nutrition	305	NA	2.02	1.26	3.23	≥30 vs. <25
Allen, 2010	Europe	European Prospective Investigation into Cancer and Nutrition	247	9 years	2.67	1.63	4.37	≥30 vs. <25
Canchola, 2010	USA	California Teachers Study	395	9.1 years	3.5 1.07 1.6 1.04 1.0 1.03	2.2 1.04 0.88 1.00 0.63 0.99	5.5 1.09 2.8 1.08 1.7 1.06	never HT use: ≥ 30 vs. <25 Per 1 unit Ever estrogen use: ≥ 30 vs. <25 Per 1 unit Used estrogen and progesterone exclusively: ≥ 30 vs. <25 Per 1 unit
Conroy, 2009	USA	Women's Health Study	264	8.8 years	2.49	1.73	3.59	\geq 30 vs. <22.5
Epstein, 2009	Sweden	Lund Cohort	166	15.5 years	3.5	2.2	5.4	>29 vs. <25
Lindemann, 2009	Norway	Hunt II	100	9 years	8.59	3.29	22.44	≥40 vs. <25
Lindemann, 2009	Norway	Hunt I	224	17.8 years	8.3	4.1	16.7	≥40 vs. <20
Lindemann, 2008	Norway	Hunt I	222	15.7 years	6.36	3.08	13.16	≥40 vs. <20
McCullough, 2008	USA	CPS II Nutrition Cohort	318	11 years	4.70	3.12	7.07	≥35 vs. <22.5
Song, 2008	Korea	Korean Cancer Prevention Study	112	8.75 years	2.95	1.20	7.24	≥30 vs. 21-22.9
Lundqvist, 2007	Sweden	Sweden, Finland Co- twin study	214	26.3 years	3.2 1.11 2.9 1.09	2.1 1.06 1.4 1.04	4.8 1.15 5.9 1.14	≥30 vs. 18.5-<25 Per unit ≥30 vs. 18.5-<25 Per unit
Chang, 2007	USA	NIH-AARP Diet and Health Study	677	4.6 years	3.03	2.50	3.68	≥30 vs. <25
Friedenreich, 2007	Europe	European Prospective Investigation into Cancer and Nutrition	567	6.4 years	3.02 1.06	1.66 1.04	5.52 1.08	≥40 vs. <25 Per 1 unit
Reeves, 2007	UK	The Million Women Study	2657	5.4 years	2.73 2.89	2.55 2.62	2.92 3.18	≥30 vs. <22.5 Per 10 units

Löf, 2007	Sweden	Women's	73	~12	3.05	1.6	5.82	≥30 vs. <25
		Lifestyle and		years				
		Health Study						
Bjørge, 2007	Norway	Norwegian	9227	25 years	2.51	2.38	2.66	≥30 vs. <18.5
		Health						
		Surveys						
Khan, 2006	Japan	Japan	14 deaths	13.3	0.79	0.08	7.70	≥25 vs. <18.5
		Collaborative		years				
		Cohort Study						
Setiawan, 2006	USA	Multiethnic	321	7.3	3.14	2.33	4.22	≥30 vs. <25
		Cohort Study		years				
Yamazawa,	Japan	NA	6	122	0.65	0.07	5.42	≥25 vs. <25
2006				months				

NA: Not available

Table 110 Overall evidence on BMI and endometrial cancer

	Summary of evidence
2005 SLR 2005	Twenty two cohort studies reported on BMI and endometrial cancer and
	found a significant positive association. All of the nineteen studies
	included in the high vs. low analysis showed positive associations, with
	only four of these showing non-significant associations.
Continuous	Eleven additional cohort studies (not included in the 2005 SLR) reported
Update Project	on BMI and endometrial cancer and all found increased risk.

Table 111 Summary of results of the dose-response meta-analysis of BMI and endometrial cancer

	Endometrial cancer	
	SLR 2005	Continuous Update Project
Studies (n)	15	25 ¹
Cases (n)	3484	18717
RR (95% CI)	1.52 (1.48-1.57)	1.50 (1.42-1.59)
Quantity	Per 5 units BMI kg/m ²	Per 5 units BMI kg/m ²
Heterogeneity (I ² , p-value)	88.0%, p<0.001	86.2%, p<0.0001

¹ One publication (Lundqvist et al, 2007) was from a combined analysis of two studies (25 risk estimates, 26 studies).

WCRF code	Author	Year	Study design	Study name	Cancer outcome	SLR 2005	CUP dose- response	CUP H vs. L forest plot	Estimated values	Exclusion reason
END00293	Yang	2013	Prospective Cohort Study	NIH-AARP Diet and Health Study	Incidence	No	No	Yes		Only high vs. low comparison
END00295	Yang	2012	Prospective Cohort Study	The Million Women Study	Incidence	No	No	No		Overlap with Reeves et al, 2007, END00251, which had a larger number of cases
END00265	Ollberding	2012	Prospective Cohort Study	Multiethnic Cohort Study	Incidence	No	No	No		Overlap with END00206 by Park et al, 2010 which provided the distribution of cases and controls
END00253	Reeves	2011	Prospective Cohort Study	Women's Health Initiative	Incidence	No	Yes	Yes	Midpoints, person-years	
END00206	Park	2010	Prospective Cohort Study	Multiethnic Cohort Study	Incidence	No	Yes	Yes	Midpoints, person-years	
END00236	Dossus	2010	Nested case- control study	European Prospective Investigation into Cancer and Nutrition	Incidence	No	No	No		Overlap with END00237 by Friedenreich et al, 2007
END00244	Allen	2010	Nested case- control study	European Prospective Investigation into Cancer and Nutrition	Incidence	No	No	No		Overlap with END00237 by Friedenreich et al, 2007
END00213	Canchola	2010	Prospective cohort study	California Teacher's Study	Incidence	No	Yes	Yes	Midpoints	

Table 112 Inclusion/exclusion table for meta-analysis of BMI and endometrial cancer

END00218	Conroy	2009	Prospective	Women's Health	Incidence	No	Yes	Yes	Midpoints,	
			cohort study	Study					person-years	
END00219	Epstein	2009	Prospective cohort study	Lund Cohort	Incidence	No	Yes	Yes	Midpoints, person-years	
END00281	Lindemann	2009	Prospective cohort study	Hunt II	Incidence	No	Yes	Yes	Midpoints, cases, person- years	
END00284	Lindemann	2009	Prospective cohort study	Hunt I	Incidence	No	No	No		Overlap with END00228 by Lindemann et al, 2008
END00228	Lindemann	2008	Prospective cohort study	Hunt I	Incidence	No	Yes	Yes	Midpoints, person-years	
END00208	McCullough	2008	Prospective cohort study	CPS II Nutrition Cohort	Incidence	No	Yes	Yes	Midpoints	
END00267	Song	2008	Prospective cohort study	Korean Cancer Prevention Study	Incidence	No	Yes	Yes	Midpoints	
END00268	Lundqvist	2007	Prospective cohort study	Sweden, Finland Co-twin study	Incidence	No	Yes	Yes	Midpoints, person-years	
END00241	Chang	2007	Prospective cohort study	NIH-AARP Diet and Health Study	Incidence	No	Yes	Yes	Midpoints	
END00237	Friedenreich	2007	Prospective cohort study	European Prospective Investigation into Cancer and Nutrition	Incidence	No	Yes	Yes	Midpoints	
END00251	Reeves	2007	Prospective cohort study	The Million Women Study	Incidence Mortality	No	Yes	Yes	Midpoints, person-years	
END00230	Löf	2007	Prospective cohort study	Women's Lifestyle and Health Study	Incidence	No	Yes	Yes	Midpoints, person-years	
END00272	Bjørge	2007	Prospective cohort study	Norwegian Health Surveys	Incidence	No	Yes	Yes	Midpoints	
END00196	Lukanova	2006	Prospective cohort study	Northern Sweden Health and Disease	Incidence	Yes	Yes	Yes	Midpoints	

				Cohort						
END00238	Khan	2006	Prospective cohort study	Japan Collaborative Cohort Study	Mortality	No	No	No		Outcome was mortality
END00232	Setiawan	2006	Prospective cohort study	Multiethnic Cohort Study	Incidence	No	No	No		Overlap with END00206 by Park et al, 2010
END00198	Yamazawa	2006	Prospective cohort study	NA	Incidence	No	No	No		Study population consisted of breast cancer cases so outcome was secondary cancer
END00180	Kuriyama	2005	Prospective cohort study	Miyagi Cohort Study	Incidence	Yes	Yes	Yes	Midpoints, person-years	
END00191	Lacey	2005	Prospective cohort study	Breast Cancer Detection Demonstration Project	Incidence	Yes	Yes	Yes	Cases, midpoints	
END00199	Rapp	2005	Prospective cohort study	The Vorarlberg Health Monitoring and Promotion Program	Incidence	Yes	Yes	Yes	Midpoints	
END00201	Silvera	2005	Prospective cohort study	Canadian National Breast Screening Study	Incidence	Yes	Yes	Yes	Midpoints	
END00246	Schouten	2004	Prospective cohort study	Netherlands Cohort Study	Incidence	Yes	Yes	Yes	Midpoints	
END00064	Folsom	2003	Prospective cohort study	Iowa Women's Health Study	Incidence	Yes	Yes	Yes	Midpoints	
END00014	Furberg	2003	Prospective cohort study	Norwegian National Health Screening Survey	Incidence	Yes	No	No		Overlap with Bjørge et al, 2006, END00272
END00074	Jonsson	2003	Prospective cohort study	Swedish Twin Cohort	Incidence	Yes	No	No		Overlap with END00268 by Lundqvist et al, 2007
END00135	Calle	2003	Prospective	Cancer	Mortality	Yes	No	No		Overlap with

			cohort study	Prevention Study II (ACS cohort)						END00208 by McCullough et al, 2008 which reported on incidence and therefore was preferred
END00124	Pukkala	2002	Prospective cohort study	Finnish Breast Cancer Cohort	Incidence	Yes	No	No		Study population consisted of breast cancer cases so outcome was secondary cancer
END00132	Zeleniuch- Jacquotte	2001	Nested case- control study	New York University Women's Health Study	Incidence	Yes	No	No		No risk estimates
END00126	Anderson	2001	Prospective cohort study	Iowa Women's Health Study	Incidence	Yes	No	No		Overlap with END00064 by Folsom et al, 2003
END00160	Folsom	2000	Prospective cohort study	Iowa Women's Health Study	Incidence	Yes	No	No		Overlap with END00064 by Folsom et al, 2003
END00009	Jain	2000	Prospective cohort study	Canadian National Breast Screening Study	Incidence	Yes	No	No		Overlap with END00201 by Silvera et al, 2005
END00149	Olson	1999	Prospective cohort study	Iowa Women's Health Study	Incidence	Yes	No	No		Overlap with END00064 by Folsom et al, 2003
END00116	Bernstein	1999	Prospective cohort study	NA	Incidence	Yes	No	No		Study population consisted of breast cancer cases so outcome was secondary cancer
END00137	Tulinius	1997	Prospective cohort study	Icelandic Cohort	Incidence	Yes	Yes	No		Only continuous risk estimate
END00094	De Waard	1996	Case cohort study	Breast Screening Cohort	Incidence	Yes	Yes	Yes	Midpoints, confidence intervals, person-years	

END00133	Tornberg	1994	Prospective cohort study	Swedish Screening Cohort	Incidence	Yes	Yes	Yes	Midpoints, confidence intervals	
END00041	Gapstur	1993	Prospective cohort study	Iowa Women's Health Study	Incidence	Yes	No	No		Overlap with END00064 by Folsom et al, 2003
END00069	Le Marchand	1991	Prospective cohort study	Hawaii Historical Cohort	Incidence	Yes	No	Yes		BMI was not quantified
END00073	Tretli	1990	Prospective cohort study	Norwegian National Health Screening Service	Incidence	Yes	No	No		Overlap with END00272 by Bjorge et al, 2007
END00058	Folsom	1989	Prospective cohort study	Iowa Women's Health Study	Incidence	Yes	No	No		Overlap with END00064 by Folsom et al, 2003
END00072	Baanders-van- Halewijn	1985	Prospective cohort study	The Dioagnostisch Underzoek Mamma- carcinom (DOM) project	Incidence	Yes	No	No		Overlap with END00094, by de Waard et al, 1996
END00071	Ewertz	1984	Nested case- control study	Danish CC	Incidence	Yes	No	No		Study population consisted of breast cancer cases so outcome was secondary cancer

NA: Not available

Author	Year	High v low R	r (95% CI)	WCRF_Code	StudyDescription	contrast
Yang	2013	 ◆ 2.81 (2.53, 3.13)	END00293	NIH-AARP	>=30 vs. <30
Reeves	2011	← 1.76 (1.41, 2.19)	END00253	WHI	>=30 vs. <25
Canchola	2010	➡ 1.87 (1.40, 2.50)	END00213	CTS	>=30 vs. <25
Park	2010		2.70, 4.63)	END00206	MEC	>=30 vs. <25
Conroy	2009	 2.49 (1.73, 3.59)	END00218	WHS	>=30 vs. <22.5
Epstein	2009		2.20, 5.40)	END00219	LC	>29 vs. <25
Lindemann	2009	8.59 (3.29, 22.44)	END00281	HUNT II	>=40 vs. <25
Lindemann	2008	— 6.36 (3.08, 13.16)	END00228	HUNT	>=40 vs. <20
McCullough	2008	4.70 (3.12, 7.07)	END00208	CPS II Nutrition Cohort	>=35 vs. <22.5
Song	2008	2.95 (1.20, 7.24)	END00267	KCPS	>=30 vs. 21-22.
Chang	2007	➡ 3.03 (2.50, 3.68)	END00241	NIH- AARP	>=30 vs. <25
Friedenreich	2007	3.02 (1.66, 5.52)	END00237	EPIC	>=40 vs. <25
Lundqvist	2007		2.18, 4.47)	END00268	SFCTS	>=30 vs. 18.5-<
Löf	2007	3.05 (1.60, 5.82)	END00230	WLHS	>=30 vs. <25
Reeves	2007	• 2.73 (2.55, 2.92)	END00251	MWS	>=30 vs. <22.5
Bjorge	2007	• 2.51 (2.38, 2.66)	END00272	NSPT&NHS	>=30 vs. <18.5
Lukanova	2006	 3.53 (1.86, 7.43)	END00196	NSHDC	>=27 vs. 18.5-2
Kuriyama	2005 -	4.04 (1.14, 14.36)	END00180	MCS	>=30 vs. 18.5-2
Lacey	2005	 2.50 (0.70, 3.70)	END00191	BCDDP	>=35 vs. 18.5-2
Rapp	2005	 3.93 (2.35, 6.56)	END00199	VHM & PP	>=27 vs. 18.5-2
Silvera	2005	→ 3.40 (2.68, 4.33)	END00201	CNBSS	>30 vs. <25
Schouten	2004	4.50 (2.62, 7.72)	END00246	NLCS	>=30 vs. <20
Folsom	2003	→ 3.36 (2.51, 4.58)	END00064	IWHS	>=30.3 vs. <22.
de Waard	1996 -	← 1.80 (1.13, 2.86)	END00094	BSC	>=29 vs. <25
Tornberg	1994	 2.55 (1.83, 3.55)	END00133	SSC	>=28 vs. <22
Le Marchand	1991	1.40 (0.90, 2.30)	END00069	HHC	Tertile 3 vs. 1
		- •				

Figure 78 Highest versus lowest forest plot of BMI and endometrial cancer

188

Author	Year		RR (95% CI)	Weight	WCRF_Code	StudyDescription
Reeves	2011	+	1.25 (1.15, 1.37)	5.05	END00253	WHI
Canchola	2010		1.30 (1.19, 1.42)	5.09	END00213	CTS
Park	2010	-+	1.58 (1.42, 1.75)	4.85	END00206	MEC
Conroy	2009		1.45 (1.27, 1.66)	4.30	END00218	WHS
Epstein	2009	+ + -	1.78 (1.44, 2.21)	3.07	END00219	LC
Lindemann	2009		1.67 (1.33, 2.08)	2.99	END00281	HUNT II
Lindemann	2008		1.34 (1.23, 1.46)	5.07	END00228	HUNT
McCullough	2008	-	1.52 (1.38, 1.68)	4.95	END00208	CPS II Nutrition Cohort
Song	2008		1.84 (1.40, 2.49)	2.25	END00267	KCPS
Chang	2007	-	1.55 (1.44, 1.68)	5.24	END00241	NIH- AARP
Friedenreich	2007	- • -i	1.34 (1.22, 1.47)	4.97	END00237	EPIC
Lundqvist	2007		1.62 (1.39, 1.89)	4.02	END00268	SFCTS
Löf	2007		1.45 (1.16, 1.82)	2.93	END00230	WLHS
Reeves	2007	+	1.70 (1.62, 1.78)	5.58	END00251	MWS
Bjorge	2007	•	1.41 (1.38, 1.44)	5.78	END00272	NSPT&NHS
Lukanova	2006	•	1.80 (1.33, 2.43)	2.11	END00196	NSHDC
Kuriyama	2005	•	1.63 (0.94, 2.82)	0.85	END00180	MCS
Lacey	2005 -	- 1	1.08 (1.00, 1.17)	5.18	END00191	BCDDP
Rapp	2005	-	1.38 (1.23, 1.55)	4.63	END00199	VHM & PP
Silvera	2005		1.75 (1.56, 1.96)	4.64	END00201	CNBSS
Schouten	2004	<u>+</u>	1.84 (1.47, 2.29)	2.99	END00246	NLCS
Folsom	2003		1.77 (1.59, 1.97)	4.77	END00064	IWHS
Tulunius	1997	•	1.31 (1.07, 1.61)	3.20	END00137	IC
de Waard	1996		1.70 (1.22, 2.35)	1.90	END00094	BSC
Tornberg	1994	+ •	1.70 (1.44, 2.07)	3.60	END00133	SSC
Overall (I-squ	ared = 86.2%, p = 0.000)	\diamond	1.50 (1.42, 1.59)	100.00		

Figure 79 Dose-response meta-analysis of BMI and endometrial cancer, per 5 units

Author	Year		Per 5 units RR (95% CI)	% Weight	WCRF_Code	StudyDescription
Postmenopau	sal women					
Reeves	2011	-	1.25 (1.15, 1.37)	8.74	END00253	WHI
Canchola	2010	-	1.30 (1.19, 1.42)	8.77	END00213	CTS
McCullough	2008	-	1.52 (1.38, 1.68)	8.65	END00208	CPS II Nutrition Cohor
Song ,	2008	•	- 1.87 (1.32, 2.64)	4.58	END00267	KCPS
Chang	2007	-	1.55 (1.44, 1.68)	8.90	END00241	NIH- AARP
Friedenreich	2007	-	1.40 (1.28, 1.61)	8.36	END00237	EPIC
Reeves	2007	+	1.99 (1.85, 2.15)	8.93	END00295	MWS
Bjorge	2007	•	1.40 (1.35, 1.45)	9.25	END00272	NSPT&NHS
Lacey	2005	-	1.08 (1.00, 1.17)	8.84	END00191	BCDDP
Schouten	2004		1.84 (1.47, 2.29)	6.53	END00246	NLCS
Folsom	2003		1.77 (1.59, 1.97)	8.49	END00064	IWHS
de Waard	1996	•	1.66 (1.12, 2.45)	4.00	END00094	BSC
Tornberg	1994	•	2.22 (1.72, 2.86)	5.96	END00133	SSC
Subtotal (I-sq	uared = 93.3%, p = 0.000)	\diamond	1.54 (1.39, 1.71)	100.00		
Premenopaus	al women					
Friedenreich	2007		1.22 (0.95, 1.54)	1.30	END00237	EPIC
Reeves	2007		1.33 (1.10, 1.61)	2.01	END00295	MWS
Bjorge	2007	•	1.41 (1.37, 1.45)	96.19	END00272	NSPT&NHS
de Waard	1996	•	→ 1.78 (0.98, 3.26)	0.21	END00094	BSC
Tornberg	1994	↓ •	1.27 (0.77, 2.11)	0.30	END00133	SSC
Subtotal (I-sa	uared = 0.0%, p = 0.640)	♦ ♦	1.41 (1.37, 1.45)	100.00		

Figure 80 Figure Dose-response meta-analysis of BMI and endometrial cancer, per 5 units, stratified by menopausal status

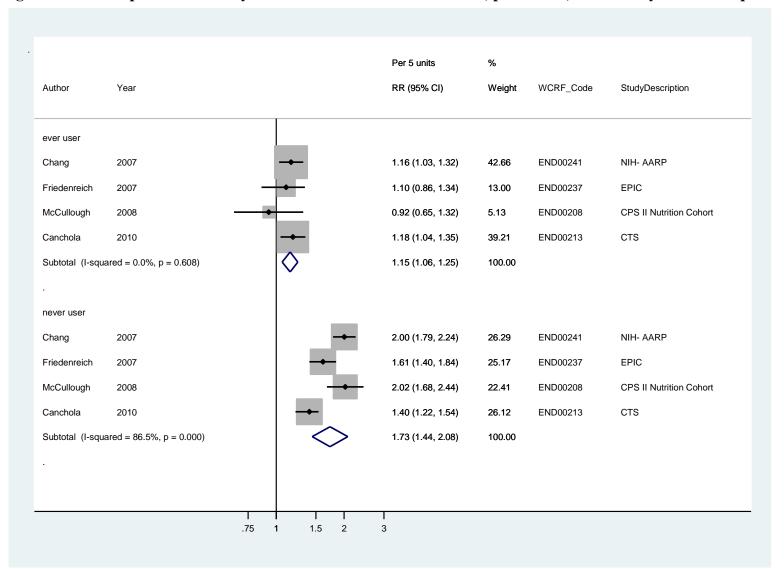
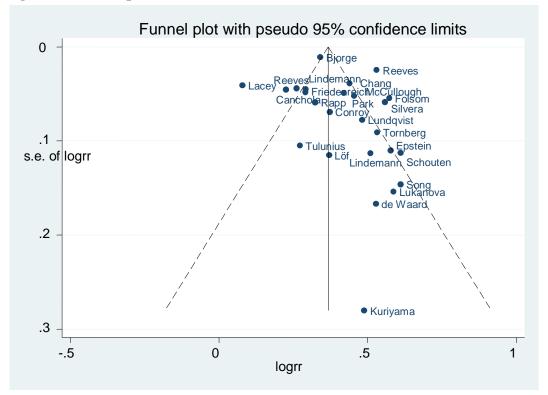
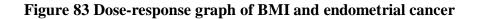
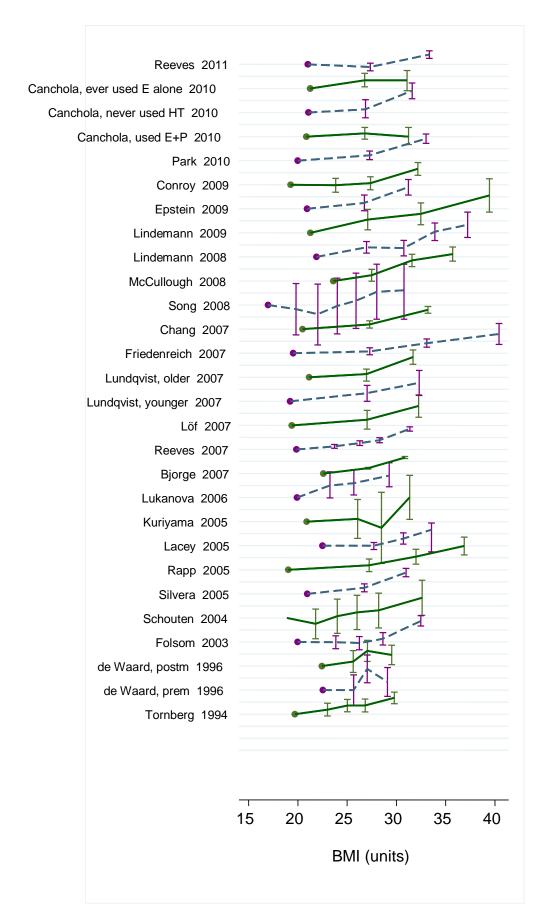





Figure 81 Dose-response meta-analysis of BMI and endometrial cancer, per 5 units, stratified by hormone replacement therapy use

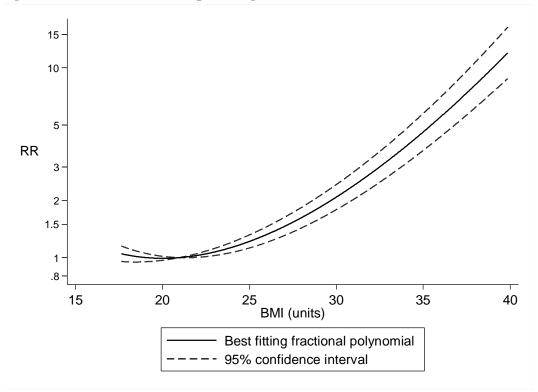
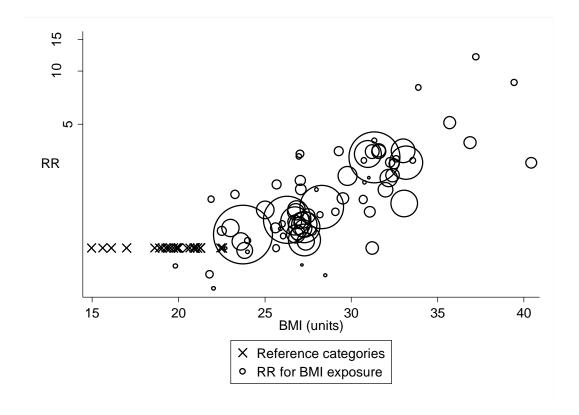



Figure 84 Nonlinear dose-response figure for BMI and endometrial cancer

Figure 85 Scatter plot of risk estimates for BMI and endometrial cancer

Explanation for nonlinear dose-response analyses

The nonlinear dose-response analyses was computed using the pool first command in Stata using the categorical risk estimates from each study included in the analysis. Several polynomial curves were tested, but the program automatically selects the curve with the best fit. The dose-response relationship was also explored using a scatter plot. The relative risk estimates were plotted against the corresponding levels of the exposure (empty circles) compared with the reference category X. The area of the circles is proportional to the inverse of the variance and was used as weights. Larger studies with small variances are therefore given more weight than small studies with large variances. Random effects models were used for the analysis.

BMI	RR (95% CI)
17.5	1.05 (0.96-1.16)
20	0.99 (0.97-1.02)
21	1.00
22.5	1.04 (1.01-1.08)
25	1.22 (1.12-1.32)
27.5	1.54 (1.37-1.73)
30	2.09 (1.79-2.44)
32.5	3.02 (2.51-3.64)
35	4.59 (3.67-5.74)
37.5	7.37 (5.65-9.61)
40	12.37 (9.03-16.94)

Table 113 RRs (95% CIs) for nonlinear analysis of BMI and endometrial cancer

8.1.1 BMI at age 18-25 years

Methods

A total of 8 cohort studies have been published on BMI at age 18-25 years and endometrial cancer risk up to December 2012, five of which were identified in the CUP. Four studies investigated BMI at age 18 years, two at age 20, one at age 21 and another at age 25 years. In this analysis, all studies were pooled together under BMI at age 18-25 years. Dose-response analyses were conducted per 5 units.

Main results

The summary RR per 5 kg/m² increase in BMI at age 18-25 years was 1.42 (95% CI: 1.22-1.66, $I^2=79\%$, $p_{heterogeneity}<0.001$, n=7). There was no evidence of publication bias with Egger's test, p=0.54, although some slight asymmetry when inspecting the funnel plot. There was some indication of a nonlinear association, $p_{nonlinearity}=0.07$, with a slight J-shaped curve, with the lowest risk for BMI around 15-16, however, the confidence intervals were wide. Four studies reported attenuation of the associations when further adjusted for current BMI (Chang et al, 2007, McCullough et al, 2008, Canchola et al, 2010, Yang et al, 2012), but only two of these could be included in dose-response analyses (Chang et al, 2007, Yang et al, 2012), and the summary RR was 1.02 (95% CI: 0.94-1.11, $I^2=0\%$, $p_{heterogeneity}=0.58$) per 5 BMI units.

Heterogeneity

There was high heterogeneity, $I^2=79\%$, $p_{heterogeneity}<0.0001$, which appeared to be driven by one study (Million Women's Study) and when this study was excluded, $I^2=0\%$, $p_{heterogeneity}=0.48$, and the summary RR was 1.28 (95% CI: 1.20-1.37).

Conclusion from the Second Expert Report

In the SLR of the 2007 Expert Report the evidence that greater body fatness increases endometrial cancer risk was considered convincing. There was no separate judgement for body fatness in young adulthood.

Author/year	Country	Study name	Cases	Years of follow- up	RR	LCI	UCI	Contrast
Yang, 2012	United Kingdom	Million Women's Study	1410	7.3	1.95	1.67	2.27	Per 5 units
Park, 2010	USA	Multiethnic Cohort Study	463	10.3	1.71	1.31	2.25	≥21.897 vs. <18.840
Canchola,	USA	California	395	9.1				never HT use:
2010		Teachers			1.8	1.1	2.9	\geq 25 vs. <25 units
		Study			1.07	1.03	1.12	Per 1 unit
								Ever estrogen use:
					1.2	0.64	2.3	\geq 25 vs. <25 units
					1.03	0.97	1.09	Per 1 unit
								Used estrogen and progesterone
					1.4	0.89	2.3	excusively:
					1.02	0.97	1.07	\geq 25 vs. <25 units
								Per 1 unit
McCullough, 2008	USA	Cancer Prevention Study 2 Nutrition Cohort	318 cases	11	2.01	1.34	3.01	≥25 vs. 18.5-<20.0
Chang, 2007	USA	NIH-AARP Diet and Health Study	677 cases	4.6	1.98	1.09	3.52	≥30 vs. <25

Table 114 Studies on BMI at age 18-25 years identified in the CUP

Table 115 Overall evidence on BMI at age 18-25 years and endometrial cancer

	Summary of evidence
2005 SLR 2005	Three cohort studies reported on BMI at age 18-25 years and endometrial
	cancer and all found a significant positive association.
Continuous	Five additional cohort studies reported on BMI at age 18-25 years and
Update Project	endometrial cancer and all found a significant increased risk, although
	risk estimates were attenuated in four studies when further adjusted for
	current BMI.

Table 116 Summary of results of the dose-response meta-analysis of BMI at age 18-25	
years and endometrial cancer	

Endometrial cancer							
	SLR 2005	Continuous Update Project					
Studies (n)	3	7					
Cases (n)	466	3740					
RR (95% CI)	1.31 (1.12-1.54)	1.42 (1.22-1.66)					
Quantity	Per 5 kg/m ²	Per 5 kg/m ²					
Heterogeneity (I ² , p-value)	0%, p=0.46	78.8%, p<0.0001					

WCRF	Author	Year	Study design	Study name	Cancer	SLR	CU dose-	CU H	Estimated	Exclusion reason
code					outcome	2005	response	vs. L	values	
								forest		
								plot		
END00295	Yang	2012	Prospective	Million	Incidence	No	Yes	No	Midpoints	Continuous result
			cohort study	Women's						only
				Study						
END00206	Park	2010	Prospective	Multiethnic	Incidence	No	Yes	Yes	Midpoint,	
			cohort study	Cohort Study					person-years	
END00213	Canchola	2010	Prospective	California	Incidence	No	Yes	Yes		
LI (DOO213	Cullenolu	2010	cohort study	Teacher's	meraenee	110	105	105		
				Study						
END00241	Chang	2007	Prospective	NIH-AARP	Incidence	No	Yes	Yes	Midpoints	
			cohort study	Diet and					-	
				Health Study						
END00208	McCullough	2008	Prospective	Cancer	Incidence	No	No	Yes	-	Only high vs. low
			cohort study	Prevention						comparison
				Study 2 - Nutrition						
				Cohort						
END00246	Schouten	2004	Prospective	Netherlands	Incidence	Yes	Yes	Yes	Midpoints	
			cohort study	Cohort Study					points	
END00074	Jonsson	2003	Prospective	Swedish Twin	Incidence	Yes	Yes	Yes	-	
			cohort study	Cohort						
END00041	Gapstur	1993	Prospective	Iowa Women's	Incidence	Yes	Yes	Yes	-	
			cohort study	Health Study						

Table 117 Inclusion/exclusion table for meta-analysis of BMI at age 18-25 years and endometrial cancer

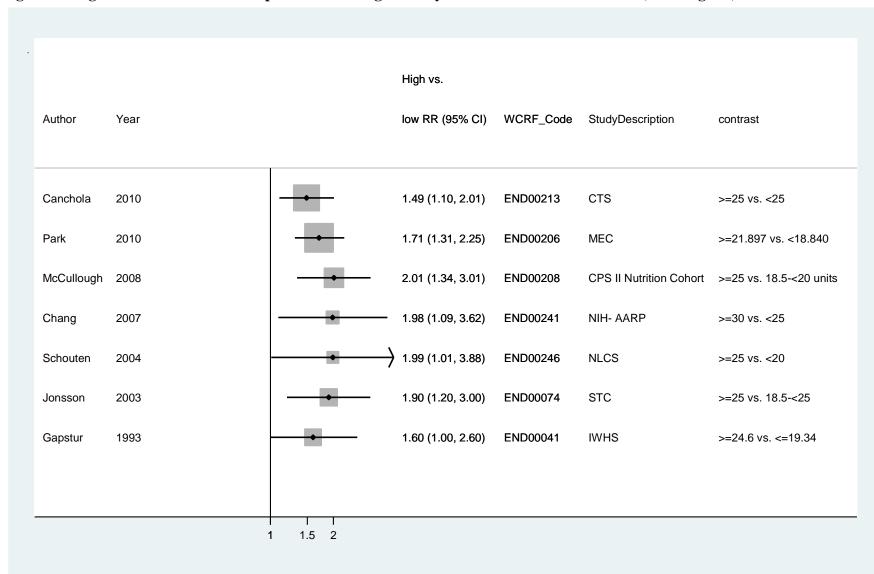


Figure 86 Highest versus lowest forest plot of BMI at age 18-25 years and endometrial cancer (units=kg/m2)

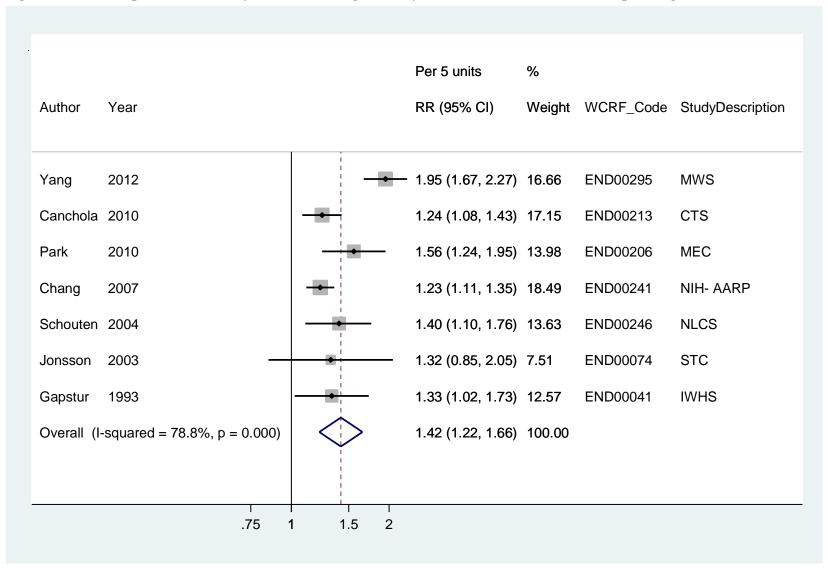
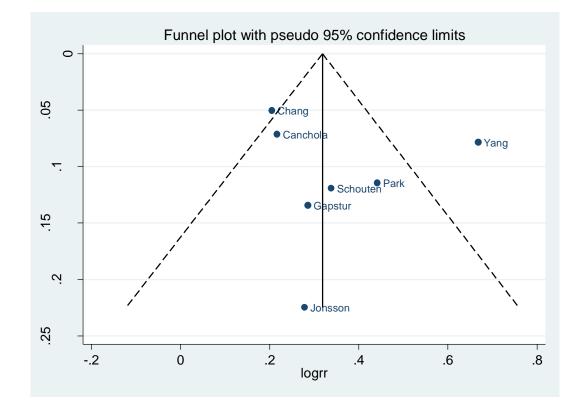



Figure 87 Dose-response meta-analysis of BMI at age 18-25 years and endometrial cancer, per 5 kg/m2

Figure 88 Funnel plot of BMI at age 18-25 years and endometrial cancer

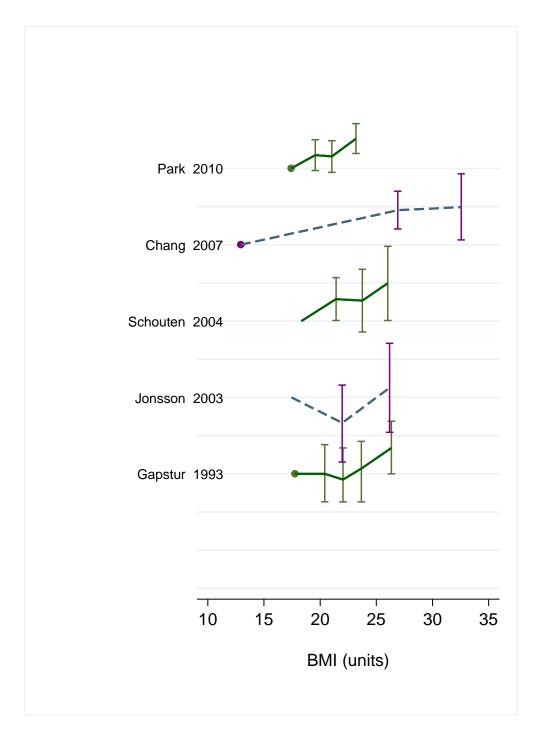


Figure 89 Dose-response graph of BMI at age 18-25 years and endometrial cancer

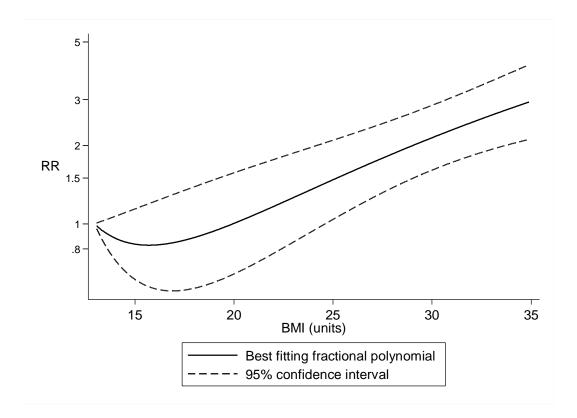


Figure 90 Nonlinear dose-response figure for BMI at age 18-25 and endometrial cancer

Figure 91 Scatter plot of risk estimates for BMI at age 18-25 and endometrial cancer

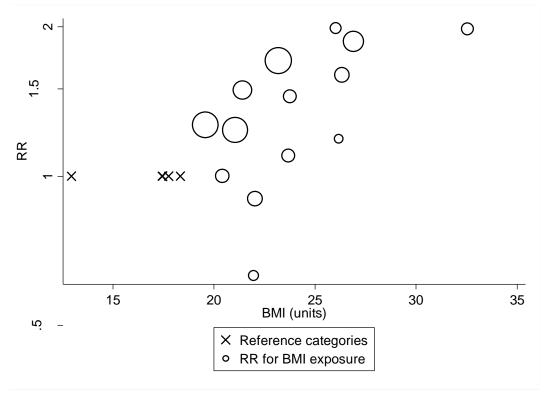


Table 118 RRs (95% CIs) for nonlinear analysis of BMI at age 18-25 and endometrial cancer

RR (95% CI)
1.00
0.83 (0.61-1.14)
0.86 (0.56-1.34)
1.00 (0.64-1.57)
1.21 (0.81-1.82)
1.48 (1.04-2.10)
1.79 (1.32-2.43)
2.14 (1.61-2.86)
2.54 (1.88-3.42)
2.96 (2.12-4.13)

8.1.6 Weight change

Methods

A total of 5 cohort studies have been published on weight change between early adulthood (age 18-25 years) and baseline and endometrial cancer risk up to 2012, four of which were identified in the CUP. Dose-response analyses were conducted per 5 kg of weight gained. It was not possible to conduct dose-response analyses for weight loss because the studies had <3 categories for weight loss. Estimates that were stratified by hormone therapy use in the study by Canchola et al were pooled using a fixed effects model.

Main results

The summary RR per 5 kg increase in weight gain was 1.16 (95% CI: 1.10-1.22, I^2 =66%, p_{heterogeneity}=0.02, n=4).

Heterogeneity

There was high heterogeneity, $I^2=66\%$, $p_{heterogeneity}=0.02$.

Comparison with the Second Expert Report

In the systematic review of the 2007 expert report there was only one cohort study on weight change and endometrial cancer and no meta-analysis was conducted.

Author/year	Country	Study name	Number of cases	Years of follow- up	RR	LCI	UCI	Comparison
Canchola,	USA	California	395	9.1				never HT use:
2010		Teachers		years	3.7	2.0	7.1	$+\geq40$ lb vs. stable
		Study			1.10	1.05	1.14	Per 10 lb
								Ever estrogen use:
					0.85	0.50	1.40	$+\geq40$ lb vs. stable
					1.05	0.98	1.13	Per 10 lb
								Used estrogen and
								progesterone exclusively:
					1.5	0.93	2.3	$+\geq 40$ lb vs. stable
					1.04	0.99	1.10	Per 10 lb
Park, 2010	USA	Multiethnic	463	10.3	3.47	1.81	6.67	+≥42.80% vs. <23.59%,
		Cohort		years				African American
		Study			2.02	1.25	3.26	+≥20.10% vs. <8.18%,
								Japanese American
					3.08	1.66	5.71	+≥35.45% vs. <18.46%,
								Latinas
					1.83	1.17	2.86	+≥26.19% vs. <10.00%,
								Whites
Chang, 2007	USA	NIH-AARP	677	4.6	2.75	1.96	3.86	+≥20 vs5 to +4.9 kg
		Diet and						
		Health						
		Study						
Friedenreich,	10	European	264	6.4	1.75	1.11	2.77	± 20 kg vs. -3 to <3 kg
2007	European	Prospective		years	1.13	1.06	1.19	Per 5 kg
	Countries	Investigatio						
		n into						
		Cancer and						
		Nutrition						

Table 119 Studies on weight change identified in the CUP

SLR	Summary of evidence
2005 SLR	One cohort study reported on weight change intake and endometrial
	cancer and found a significant positive association.
Continuous	Four additional cohort studies reported on weight change and
update	endometrial cancer and all found increased risk, although in one study the
	association was restricted to never users of hormone therapy.

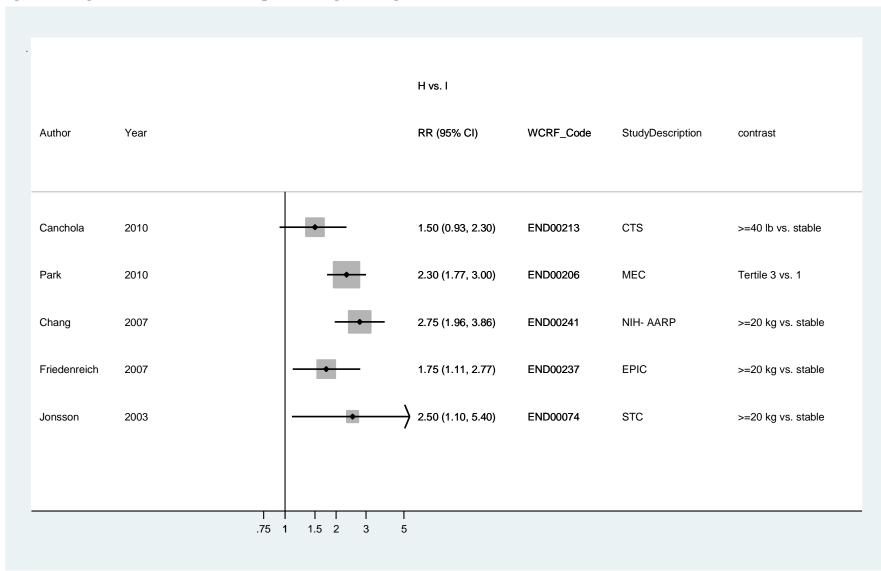

Table 120 Overall evidence on weight change and endometrial cancer

Table 121 Summary of results of the dose-response meta-analysis of weight change and endometrial cancer

Endometrial cancer							
	2nd Report	Updated meta-analysis					
Studies (n)	-	5					
Cases (n)	-	1971					
RR (95% CI)	-	1.16 (1.10-1.22)					
Quantity	-	Per 5 kg					
Heterogeneity (I ² , p-value)	-	65.5%, p=0.02					

WCRF code	Author	Year	Study design	Study name	Cancer outcome	SLR	CU dose- response	CU H vs. L forest plot	Estimated values	Exclusion reason
END00213	Canchola	2010	Prospective cohort study	California Teacher's Study	Incidence	No	Yes	Yes		
END00206	Park	2010	Prospective cohort study	Multiethnic Cohort Study	Incidence	No	Yes	Yes	Midpoints, person-years, exposure was converted from % weight change to kg weight change	
END00241	Chang	2007	Prospective cohort study	NIH-AARP Diet and Health Study	Incidence	No	Yes	Yes	Midpoints	
END00237	Friedenreich	2007	Prospective cohort study	European Prospective Investigation into Cancer and Nutrition	Incidence	No	Yes	Yes	Midpoints	
END00074	Jonsson	2003	Prospective cohort study	Swedish Twin Cohort	Incidence	Yes	Yes	Yes	Midpoints, person-years	

Table 122 Inclusion/exclusion table for meta-analysis of weight change and endometrial cancer

Figure 92 Highest versus lowest forest plot of weight change and endometrial cancer

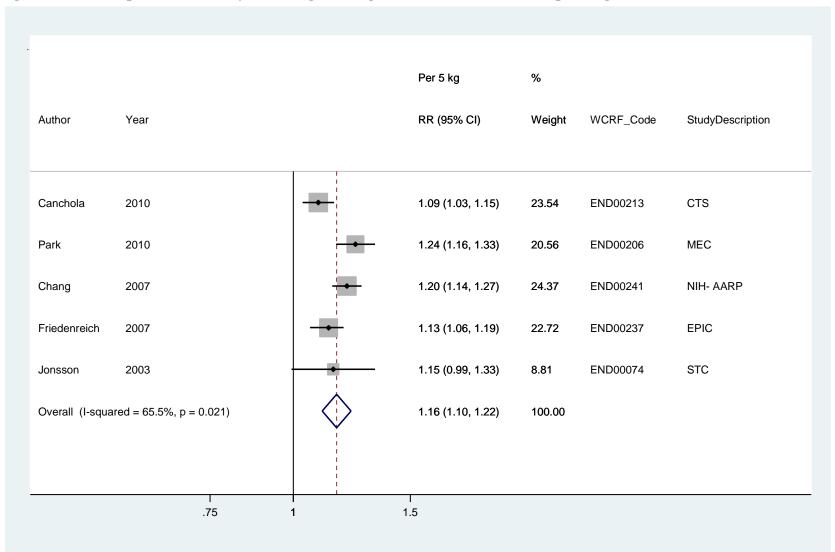
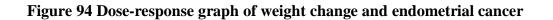
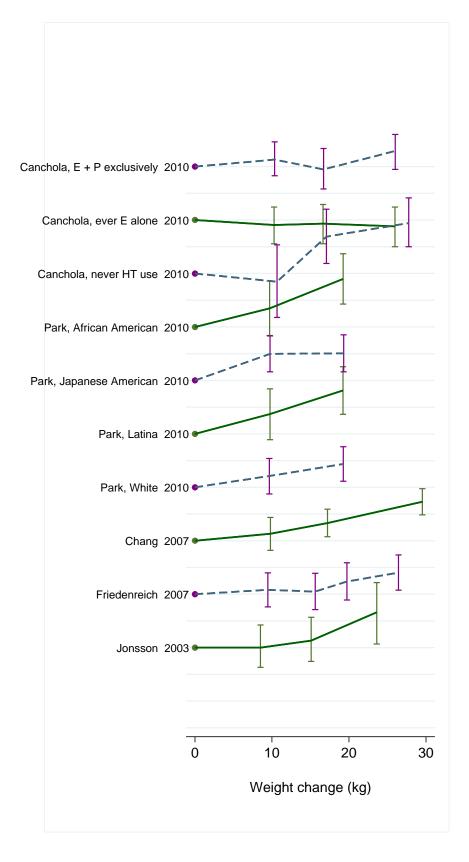




Figure 93 Dose-response meta-analysis of weight change and endometrial cancer, per 5 kg

8.2.1 Waist circumference

Methods

A total of 4 cohort studies have been published on waist circumference and endometrial cancer risk up to December 2012, three of which were identified in the CUP. Dose-response analyses were conducted per 5 cm increase in waist circumference. Estimates that were stratified by hormone therapy use in the study by Canchola et al were pooled using a fixed effects model.

Main results

The summary RR per 5 cm increase in waist circumference was 1.13 (95% CI: 1.08-1.18, $I^2=70.5\%$, $p_{heterogeneity}=0.02$, n=4). For two studies which further adjusted for BMI (Friedenreich et al, 2007 and Conroy et al, 2009), the summary RR was 1.12 (95% CI: 1.05-1.20, $I^2=19.6\%$, $p_{heterogeneity}=0.27$). There was evidence of a nonlinear association between waist circumference and endometrial cancer risk, $p_{nonlinearity}<0.0001$, with a steeper increase in risk at higher levels of waist circumference.

Two studies which further adjusted for BMI could be included in a meta-analysis (Friedenreich et al, 2007 and Conroy et al, 2009), and the summary RR was 1.12 (95% CI: 1.05-1.20, $I^2=20\%$, $p_{heterogeneity}=0.27$).

Heterogeneity

There was high heterogeneity, $I^2=70.5\%$, $p_{heterogeneity}=0.02$.

Conclusion from the Second Expert Report

In the SLR of the 2007 Expert Report the evidence relating abdominal fatness to endometrial cancer risk was considered probable. The conclusion was based in the positive associations observed in the four case-control studies identified.

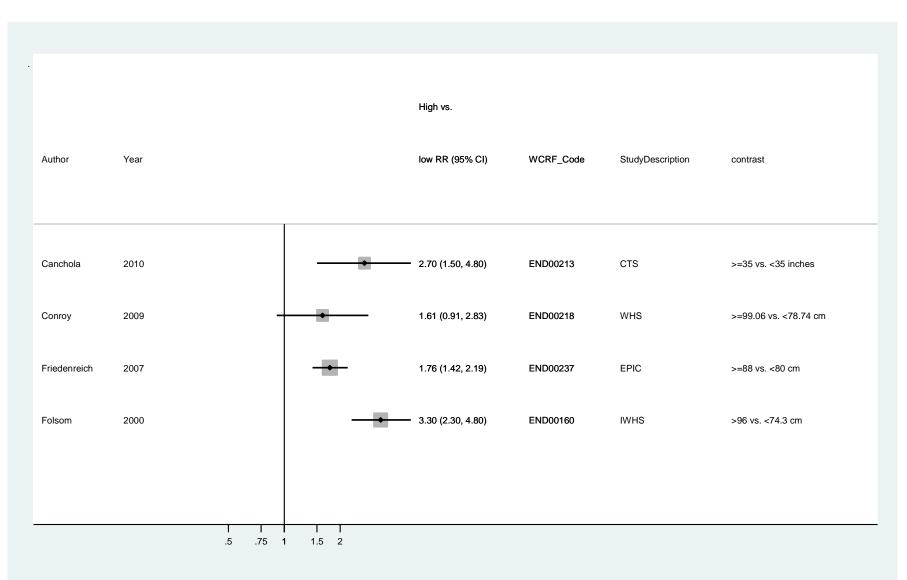
Author/year	Country	Study name	Cases	Years of	RR	LCI	UCI	Contrast
				follow-				
				up				
Canchola,	USA	California	395	9.1				never HT use:
2010		Teachers			2.7	1.5	4.8	\geq 35 vs. <35 inches
		Study			1.09	1.02	1.08	Per 1 inch
								Ever estrogen use:
					1.3	0.78	2.2	\geq 35 vs. <35 inches
					1.02	0.97	1.08	Per 1 inch
								Used estrogen and
								progesterone
					1.3	0.85	2.0	exclusively:
					1.02	0.98	1.06	\geq 35 vs. <35 inches
								Per 1 inch
Conroy, 2009	USA	Women's	264	8.8	1.61	0.91	2.83	≥39.0 vs. <31.0
		Health Study						inches
Friedenreich,	Europe	European	567	6.4	1.76	1.42	2.19	≥88 vs. <88 cm
2007		Prospective			1.13	1.09	1.17	Per 5 cm
		Investigation						
		into Cancer						
		and Nutrition						

Table 123 Studies on waist circumference identified in the CUP

Table 124 Overall evidence on waist circumference and endometrial cancer

	Summary of evidence
2005 SLR 2005	One cohort study reported on waist circumference intake and endometrial
	cancer and found a significant positive association.
Continuous	Three additional cohort studies reported on waist circumference and
Update Project	endometrial cancer and two found significantly increased risk, while one
	reported no significant association. In one of the studies the positive
	association was restricted to never users of hormone therapy.

Table 125 Summary of results of the dose-response meta-analysis of waist circumference and endometrial cancer


Endometrial cancer								
	SLR 2005*	Continuous Update Project						
Studies (n)	-	4						
Cases (n)	-	1641						
RR (95% CI)	-	1.13 (1.08-1.18)						
Quantity	-	Per 5 cm						
Heterogeneity (I ² , p-value)	-	70.5%, p=0.02						

*No meta-analysis was conducted in the SLR 2005

WCRF code	Author	Year	Study design	Study name	Cancer outcome	SLR 2005	CU dose- response	CUH vs. L forest plot	Estimated values	Exclusion reason
END00213	Canchola	2010	Prospective cohort study	California Teacher's Study	Incidence	No	Yes	Yes		
END00218	Conroy	2009	Prospective cohort study	Women's Health Study	Incidence	No	Yes	Yes	Midpoints, person-years	
END00237	Friedenreich	2007	Prospective cohort study	European Prospective Investigation into Cancer and Nutrition	Incidence	No	Yes	Yes	Midpoints	
END00160	Folsom	2000	Prospective cohort study	Iowa Women's Health Study	Incidence	Yes	Yes	Yes	Midpoints	

Table 126 Inclusion/exclusion table for meta-analysis of waist circumference and endometrial cancer

Figure 95 Highest versus lowest forest plot of waist circumference and endometrial cancer

217

Figure 96 Dose-response meta-analysis of waist circumference and endometrial cancer, per 5 cm

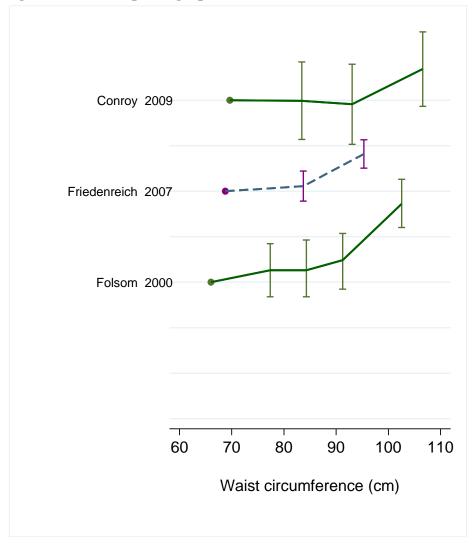


Figure 97 Dose-response graph of waist circumference and endometrial cancer

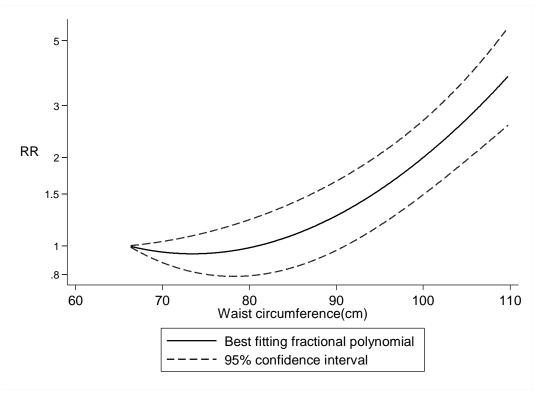
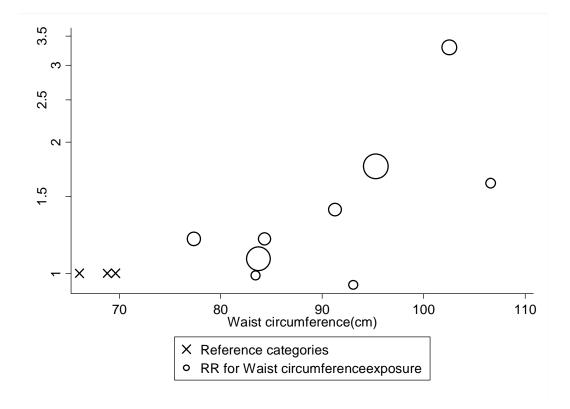



Figure 98 Nonlinear dose-response figure for waist circumference and endometrial cancer

Figure 99 Scatter plot of risk estimates for waist circumference and endometrial cancer

Table 127 RRs (95% CIs) for nonlinear analysis of waist circumference and endometrial cancer

Waist circumference	RR (95% CI)
66.17	1.00
70	0.95 (0.88-1.03)
75	0.94 (0.80-1.11)
80	0.99 (0.79-1.23)
85	1.09 (0.84-1.40)
90	1.27 (0.97-1.66)
95	1.55 (1.18-2.06)
100	2.01 (1.50-2.69)
105	2.72 (1.97-3.76)
110	3.84 (2.61-5.65)

8.2.3 Waist-to-hip ratio

Methods

A total of 5 cohort studies (9 publications) have been published on waist-to-hip ratio and endometrial cancer risk up to December 2012, four of which were identified in the CUP. Dose-response analyses were conducted per 0.1 units.

Main results

The summary RR per 0.1 units increase in waist-to-hip ratio was 1.21 (95% CI: 1.13-1.29, $I^2=0\%$, $p_{heterogeneity}=0.48$, n=5). For three studies that further adjusted for BMI (Friedenreich et al, 2007, Conroy et al, 2009, Reeves et al, 2011), the summary RR was 1.07 (95% CI: 0.97-1.17, $I^2=0\%$, $p_{heterogeneity}=0.99$). There was no evidence of a nonlinear association between waist-to-hip ratio and endometrial cancer, $p_{nonlinearity}=0.29$.

Heterogeneity

There was no evidence of heterogeneity, $I^2=0\%$, $p_{heterogeneity}=0.48$.

Conclusion from the Second Expert Report

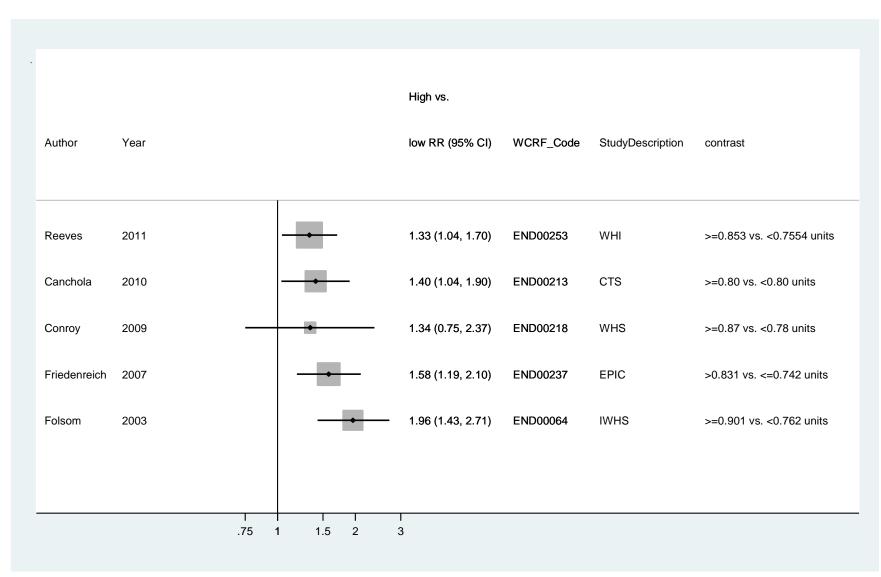
In the SLR of the 2007 Expert Report the evidence relating abdominal fatness to endometrial cancer risk was considered probable. Only one cohort was identified. The summary odds ratio for 0.1 increment from four cohort studies was 1.45 (95% CI: 1.00-2.09).

Author/year	Country	Study name	Cases	Years	RR	LCI	UCI	Contrast
				of				
				follow-				
				up				
Reeves, 2011	USA	Women's Health	806	7.8	1.33	1.04	1.70	≥0.8530 vs. <0.7554
		Initiative						
Canchola,	USA	California	395	9.1				never HT use:
2010		Teachers Study			2.7	1.3	5.6	≥0.80 vs. <0.80
					1.31	1.02	1.68	units
								Per 0.1 unit
					1.5	0.83	2.6	Ever estrogen use: >0.80 vs. <0.80
					1.10	0.85	1.43	≥ 0.80 vs. < 0.80 units
								Per 0.1 unit
					1 1	0.70	1.6	Used estrogen and
					1.1 1.01	0.70 0.78	1.0	progesterone
					1.01	0.78	1.51	exclusively:
								≥0.80 vs. <0.80
								units
								Per 0.1 unit
Conroy, 2009	USA	Women's	264	8.8	1.34	0.75	2.37	$\geq 0.87 \text{ vs.} < 0.78$
		Health Study			1.50	1.10	2 1 0	units
Friedenreich,	Europe	European	567	6.4	1.58	1.19	2.10	>0.831 vs. ≤0.742
2007		Prospective			1.17	1.03	1.32	units
		Investigation						Per 0.1 unit
		into Cancer and Nutrition						
		nutrition						

Table 128 Studies on waist-to-hip ratio identified in the CUP

Table 129 Overall evidence on waist-to-hip ratio and endometrial cancer

	Summary of evidence
2005 SLR 2005	One cohort study (four publications) reported on waist-to-hip ratio and
	endometrial cancer and found a significant positive association.
Continuous	Four additional cohort studies reported on waist-to-hip ratio and
Update Project	endometrial cancer and all found increased risk, although risk estimates
	were non-significant in one study and in another study the association
	was restricted to never users of hormone therapy.


Table 130 Summary of results of the dose-response meta-analysis of waist-to-hip ratio and endometrial cancer

Endometrial cancer								
	SLR 2005*	Continuous Update Project						
Studies (n)	-	5						
Cases (n)	-	2330						
RR (95% CI)	-	1.21 (1.13-1.29)						
Quantity	-	Per 0.1 units						
Heterogeneity (I ² , p-value)	-	0%, p=0.48						

*No meta-analysis was conducted in the SLR 2005

WCRF code	Author	Year	Study design	Study name	Cancer	SLR	CU dose-	CU H	Estimated	Exclusion reason
					outcome	2005	response	vs. L	values	
								forest		
								plot		
END00253	Reeves	2011	Prospective	Women's Health	Incidence	No	Yes	Yes	Midpoints,	
			cohort study	Initiative					person-years	
END00213	Canchola	2010	Prospective	California	Incidence	No	Yes	Yes		
			cohort study	Teacher's Study						
END00218	Conroy	2009	Prospective	Women's Health	Incidence	No	Yes	Yes	Midpoints,	
END00218	Comby	2009	cohort study	Study	Incluence	INU	105	105	person-years	
END00237	Friedenreich	2007	Prospective	European	Incidence	No	Yes	Yes	Midpoints	
END00237	Filedenielen	2007	cohort study	Prospective	Incluence	INU	105	105	Micpolitis	
			conort study	Investigation						
				into Cancer and						
				Nutrition						
END00064	Folsom	2003	Prospective	Iowa Women's	Incidence	Yes	Yes	Yes	Midpoints	
			cohort study	Health Study					-	
END00126	Anderson	2001	Prospective	Iowa Women's	Incidence	Yes	No	No		Overlap with END00160
			cohort study	Health Study						by Folsom et al, 2000, no
										risk estimates presented
END00160	Folsom	2000	Prospective	Iowa Women's	Incidence	Yes	No	No		Overlap with Folsom et
			cohort study	Health Study						al, 2003 END00064
END00041	Gapstur	1993	Prospective	Iowa Women's	Incidence	Yes	No	No		Overlap with END00160
			cohort study	Health Study						by Folsom et al, 2000
END00058	Folsom	1989	Prospective	Iowa Women's	Incidence	Yes	No	No		Overlap with END00160
			cohort study	Health Study						by Folsom et al, 2000

Table 131 Inclusion/exclusion table for meta-analysis of waist-to-hip ratio and endometrial cancer

Figure 100 Highest versus lowest forest plot of waist-to-hip ratio and endometrial cancer

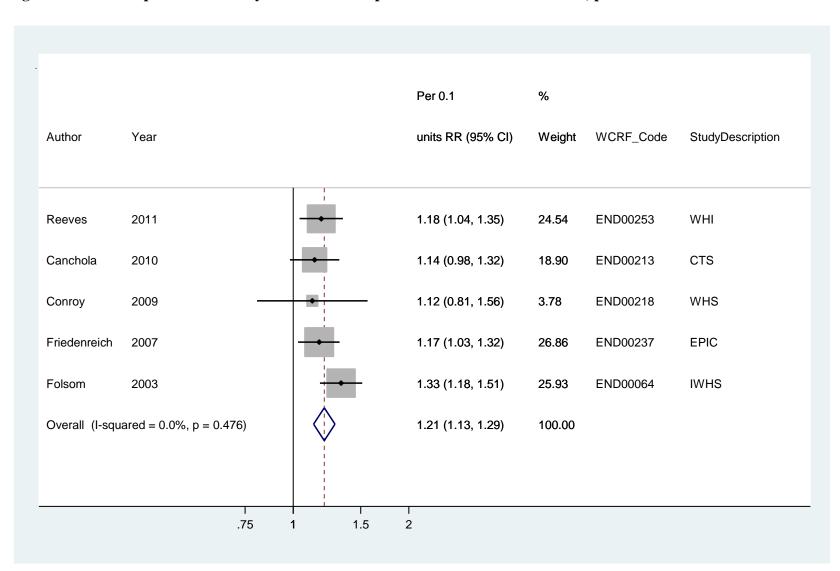


Figure 101 Dose-response meta-analysis of waist-to-hip ratio and endometrial cancer, per 0.1 units

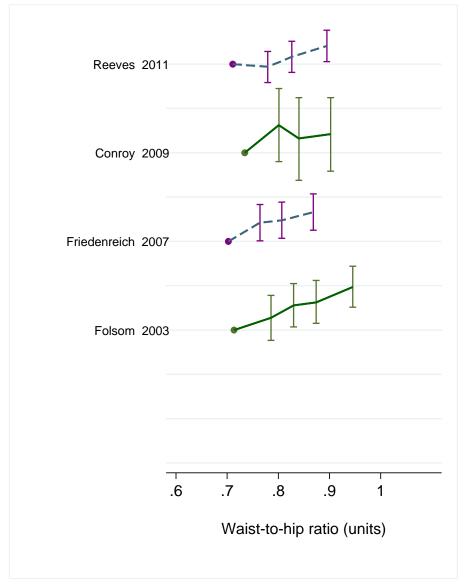


Figure 102 Dose-response graph of waist-to-hip ratio and endometrial cancer

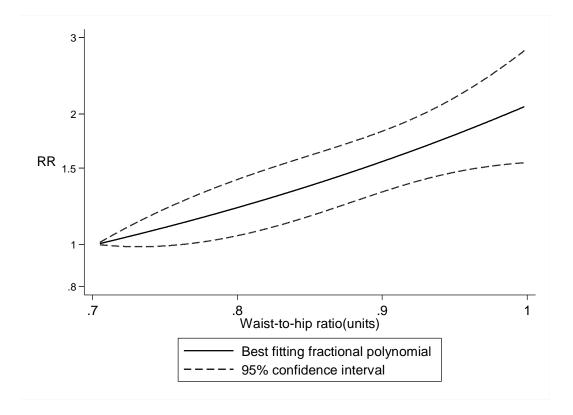


Figure 103 Nonlinear dose-response for waist-to-hip ratio and endometrial cancer

Figure 104 Scatter plot of risk estimates for waist-to-hip ratio and endometrial cancer

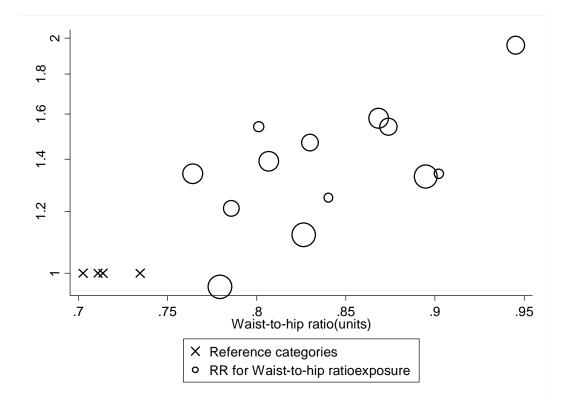


Table 132 RRs (95% CIs) for nonlinear analysis of waist-to-hip ratio and endometrial cancer

WHR	RR (95% CI)
0.7035	1.00
0.7508	1.10 (0.99-1.21)
0.8009	1.22 (1.05-1.42)
0.8501	1.37 (1.16-1.60)
0.9002	1.55 (1.32-1.83)
0.9503	1.79 (1.47-2.18)
1.0004	2.09 (1.54-2.84)

8.3.1 Height

Methods

A total of 13 cohort studies and one ancillary analysis on a randomised trial (18 publications) have been published on height and endometrial cancer risk up to December 2012, eight (7 publications) of which were identified in the CUP. Dose-response analyses were conducted per 5 cm. We used the method by Hamling et al to convert risk estimates for studies that used the second lowest category as the reference category.

Main results

The summary RR per 5 cm increase in height was 1.07 (95% CI: 1.03-1.11, $I^2=69.0\%$, $p_{heterogeneity}=0.001$, n=9). There was no evidence of a nonlinear association between height and endometrial cancer, $p_{nonlinearity}=0.39$

Heterogeneity

There was high heterogeneity, $I^2=69.0\%$, $p_{heterogeneity}=0.001$.

Conclusion from the Second Expert Report

In the systematic review of the 2007 expert report the evidence relating height to increased endometrial cancer risk was considered limited suggestive.

Table 133 Stud	lies on height	identified in	the CUP
----------------	----------------	---------------	---------

Author/ year	Country	Study name	Cases	Years of follow -up	RR	LCI	UCI	Contrast
Kabat, 2013	Canada	Canadian National Breast Screening Study	780	16.2	1.36	1.22	1.52	Per 10 cm
Green, 2011	UK	The Million Women Study	5810	9.4	1.19	1.12	1.26	Per 10 cm
Park, 2010	USA	Multiethnic Cohort Study	463	10.3	0.97	0.72	1.32	≥165.1 vs. <157.0 cm
Sung, 2009	Korea	Korean Cancer Prevention Study	298	~9	1.24	1.08	1.41	Per 5 cm increment
Lundqvist, 2007	Sweden, Finland	Sweden, Finland co-	214	26.3	0.9	0.6	1.2	Quartile 4 vs. 1

		Twin study						
Friedenreich, 2007	Europe	European Prospective Investigatio n into	567	6.4	1.09 1.01	0.83 0.94	1.42 1.09	>166.5 vs. ≤157.0 cm Per 5 cm
		Cancer and Nutrition						
Bjorge, 2007	Norway	Norwegian Health Surveys	9227	25	1.11	1.04	1.19	≥170 vs. 160- 169 cm

Table 134 Overall evidence on height and endometrial cancer

	Summary of evidence							
2005 SLR 2005	Ten cohort studies reported on height and endometrial cancer, but only							
	four of these could be included in dose-response and high vs. low							
	analyses respectively. Three studies found a significant positive							
	association, which was limited to older women in one of these studies.							
	The remaining studies showed non-significant associations.							
Continuous	Eight additional follow-up studies reported on height and endometrial							
Update Project	cancer, and four (three estimates) found no significant association, but							
	four other studies found a significant positive association.							

Table 135 Summary of results of the dose-response meta-analysis of height and endometrial cancer

Endometrial cancer								
	SLR 2005	Continuous Update Project						
Studies (n)	4	9*						
Cases (n)	-	17732						
RR (95% CI)	1.17 (0.96-1.42)	1.07 (1.03-1.11)						
Quantity	Per 10cm	Per 5 cm						
Heterogeneity (I ² , p-value)	0%	69.0%, p=0.001						

* Nine risk estimates (10 studies), one publication included results from an analysis of two studies combined (Lundqvist et al, 2007).

WCRF code	Author	Year	Study design	Study name	Cancer	SLR	CU dose-	CU H	Estimated	Exclusion reason
					outcome	2005	response	vs. L	values	
								forest		
								plot		
END00297	Kabat	2013	Prospective	Canadian	Incidence	No	Yes	No		Only continuous
			cohort study	National Breast						estimate
				Screening Study						
END00259	Green	2011	Prospective	The Million	Incidence	No	Yes	No		Only continuous
			cohort study	Women Study						estimate
END00206	Park	2010	Prospective	Multiethnic	Incidence	No	Yes	Yes	Midpoints,	
			cohort study	Cohort Study					person-years	
END00282	Sung	2009	Prospective	Korean Cancer	Incidence	No	Yes	Yes	Midpoints	
			cohort study	Prevention						
				Study						
END00237	Friedenreich	2007	Prospective	European	Incidence	No	Yes	Yes	Midpoints	
			cohort study	Prospective						
				Investigation						
				into Cancer and						
				Nutrition						
END00268	Lundqvist	2007	Prospective	Sweden, Finland	Incidence	No	Yes	Yes	Midpoints,	
			cohort study	Co-twin study					person-years	
END00272	Bjørge	2007	Prospective	Norwegian	Incidence	No	Yes	Yes	Midpoints	
			cohort study	Health Surveys						
END00246	Schouten	2004	Prospective	Netherlands	Incidence	Yes	Yes	Yes		
			cohort study	Cohort Study						
END00172	Unfer	2004	Ancillary	NA	Incidence	Yes	No	No		No risk estimates, not
			analysis in							endometrial cancer
			Randomised							cases
			Controlled							

Table 136 Inclusion/exclusion table for meta-analysis of height and endometrial cancer

			Trial (5 years follow-up)							
END00014	Furberg	2003	Prospective cohort study	Norwegian Health Screening Service	Incidence	Yes	No	No		Overlap with Bjorge et al, 2006 END00272
END00074	Jonsson	2003	Prospective cohort study	Swedish Twin Registry	Incidence	Yes	No	No		Overlap with Lundqvist et al, 2007, END00268
END00014	Zeleniuch- Jacquotte	2001	Nested case- control study	New York University Women's Health Study	Incidence	Yes	No	No		No risk estimates (only mean height)
END00060	Terry	1999	Prospective cohort study	Swedish Twin Registry	Incidence	Yes	No	No		Overlap with END00074 by Jonsson et al, 2003
END00094	de Waard	1996	Prospective cohort study	Breast Cancer Screening	Incidence	Yes	Yes	Yes	Midpoints, confidence intervals	
END00069	Le Marchand	1991	Prospective cohort study	Hawaii Historical Cohort	Incidence	Yes	No	Yes		No measure of height provided
END00073	Tretli	1990	Prospective cohort study	Norwegian National Health Screening Study	Incidence	Yes	No	No		Overlap with Bjorge et al, 2006 END00272
END00072	Baanders-van Halewijn	1985	Nested case- control study	Netherlands Breast Cancer Screening	Incidence	Yes	No	No		Overlap with END00094, de Waard et al, 1996
END00071	Ewertz	1984	Nested case- control study	Danish CC	Incidence	Yes	No	No		Participants were patients with breast cancer

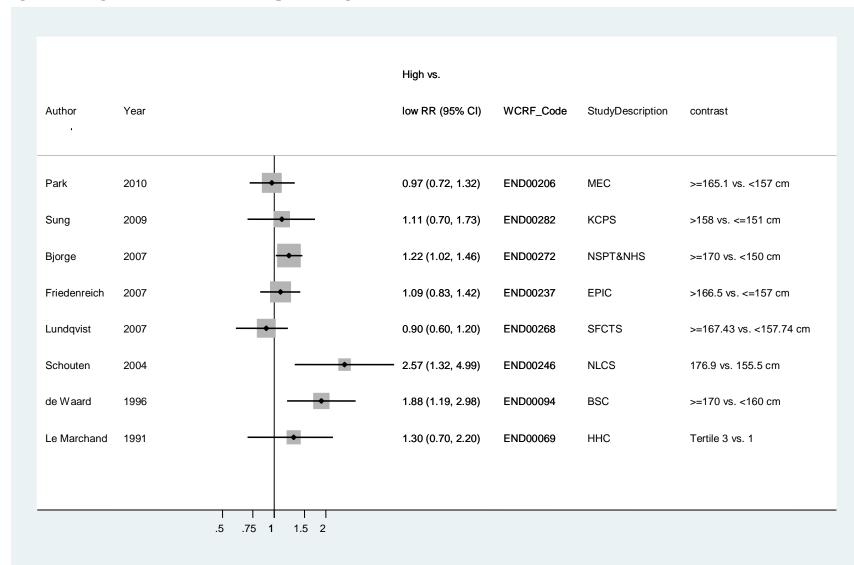


Figure 105 Highest versus lowest forest plot of height and endometrial cancer

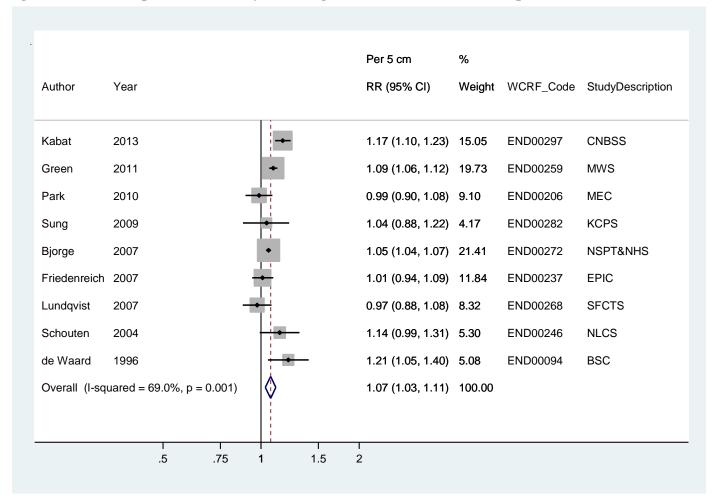


Figure 106 Dose-response meta-analysis of height and endometrial cancer, per 5 cm

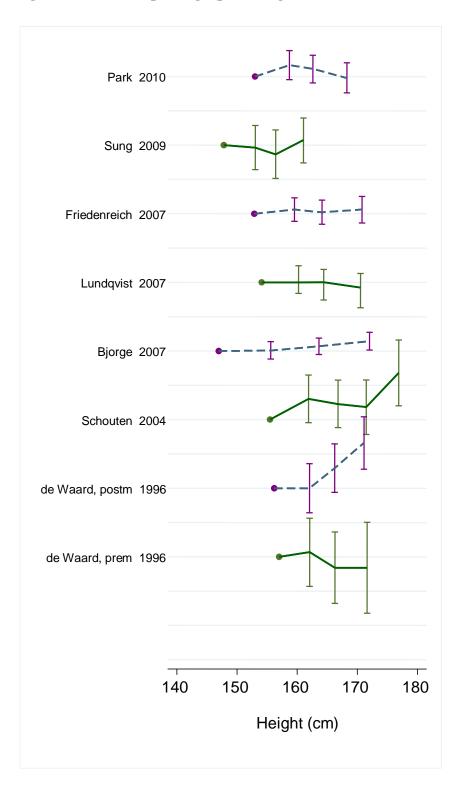


Figure 107 Dose-response graph of height and endometrial cancer

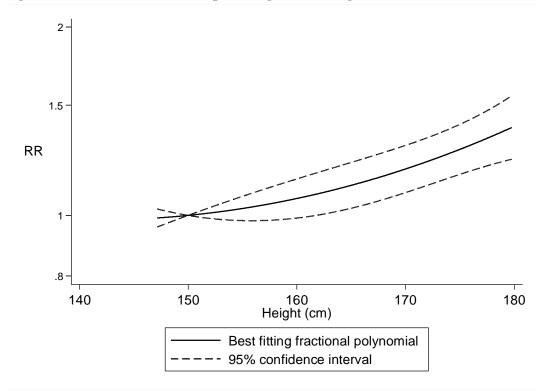


Figure 108 Nonlinear dose-response figure for height and endometrial cancer

Figure 109 Scatter plot of risk estimates for height and endometrial cancer

 Table 137 RRs (95% CIs) for nonlinear analysis of height and endometrial cancer

Height (cm)	RR (95% CI)
150	1.00
155	1.03 (0.98-1.07)
160	1.06 (0.99-1.14)
165	1.13 (1.03-1.22)
170	1.19 (1.09-1.29)
175	1.28 (1.16-1.40)
180	1.39 (1.23-1.56)

Reference List

- 1 Aarestrup J, Kyro C, Christensen J, Kristensen M, Lund Wurtz AM, Johnsen NFet al. Whole grain, dietary fiber, and incidence of endometrial cancer in a danish cohort study. Nutr Cancer 2012;64(8):1160-8.
- 2 Allen NE, Beral V, Casabonne D, Kan SW, Reeves GK, Brown Aet al. Moderate alcohol intake and cancer incidence in women. J Natl Cancer Inst 2009;101(5):296-305.
- 3 Allen NE, Tsilidis KK, Key TJ, Dossus L, Kaaks R, Lund Eet al. Menopausal hormone therapy and risk of endometrial carcinoma among postmenopausal women in the European Prospective Investigation Into Cancer and Nutrition. Am J Epidemiol 2010;172(12):1394-403.
- 4 Anderson KE, Anderson E, Mink PJ, Hong CP, Kushi LH, Sellers TAet al. Diabetes and endometrial cancer in the Iowa women's health study. Cancer Epidemiol Biomarkers Prev 2001;10(6):611-6.
- 5 Baanders-van Halewijn EA, Poortman J. A case-control study of endometrial cancer within a cohort. Maturitas 1985;7(1):69-76.
- 6 Bandera EV, Kushi LH, Moore DF, Gifkins DM, McCullough ML. Fruits and vegetables and endometrial cancer risk: a systematic literature review and metaanalysis. Nutr Cancer 2007;58(1):6-21.
- 7 Bandera EV, Kushi LH, Moore DF, Gifkins DM, McCullough ML. Consumption of animal foods and endometrial cancer risk: a systematic literature review and metaanalysis. Cancer Causes Control 2007;18(9):967-88.
- 8 Bandera EV, Kushi LH, Moore DF, Gifkins DM, McCullough ML. Dietary lipids and endometrial cancer: the current epidemiologic evidence. Cancer Causes Control 2007;18(7):687-703.
- 9 Bandera EV, Williams MG, Sima C, Bayuga S, Pulick K, Wilcox Het al. Phytoestrogen consumption and endometrial cancer risk: a population-based case-control study in New Jersey. Cancer Causes Control 2009;20(7):1117-27.
- 10 Bernstein L, Deapen D, Cerhan JR, Schwartz SM, Liff J, McGann-Maloney Eet al. Tamoxifen therapy for breast cancer and endometrial cancer risk. J Natl Cancer Inst 1999;91(19):1654-62.
- 11 Bjorge T, Engeland A, Tretli S, Weiderpass E. Body size in relation to cancer of the uterine corpus in 1 million Norwegian women. Int J Cancer 2007;120(2):378-83
- 12 Bravi F, Scotti L, Bosetti C, Gallus S, Negri E, La VCet al. Coffee drinking and endometrial cancer risk: a metaanalysis of observational studies. Am J Obstet Gynecol 2009;200(2):130-5.
- 13 Brunner RL, Wactawski-Wende J, Caan BJ, Cochrane BB, Chlebowski RT, Gass MLet al. The effect of calcium plus vitamin D on risk for invasive cancer: results of the

Women's Health Initiative (WHI) calcium plus vitamin D randomized clinical trial. Nutr Cancer 2011;63(6):827-41.

- 14 Butler LM, Wu AH. Green and black tea in relation to gynecologic cancers. Mol Nutr Food Res 2011;55(6):931-40.
- 15 Calle EE, Rodriguez C, Walker-Thurmond K, Thun MJ. Overweight, obesity, and mortality from cancer in a prospectively studied cohort of U.S. adults. N Engl J Med 2003;348(17):1625-38.
- 16 Canchola AJ, Chang ET, Bernstein L, Largent JA, Reynolds P, Deapen Det al. Body size and the risk of endometrial cancer by hormone therapy use in postmenopausal women in the California Teachers Study cohort. Cancer Causes Control 2010;21(9):1407-16.
- 17 Chang SC, Lacey JV, Jr., Brinton LA, Hartge P, Adams K, Mouw Tet al. Lifetime weight history and endometrial cancer risk by type of menopausal hormone use in the NIH-AARP diet and health study. Cancer Epidemiol Biomarkers Prev 2007;16(4):723-30.
- 18 Conroy MB, Sattelmair JR, Cook NR, Manson JE, Buring JE, Lee IM. Physical activity, adiposity, and risk of endometrial cancer. Cancer Causes Control 2009;20(7):1107-15.
- 19 Crosbie EJ, Zwahlen M, Kitchener HC, Egger M, Renehan AG. Body mass index, hormone replacement therapy, and endometrial cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 2010;19(12):3119-30.
- 20 Cross AJ, Leitzmann MF, Gail MH, Hollenbeck AR, Schatzkin A, Sinha R. A prospective study of red and processed meat intake in relation to cancer risk. PLoS Med 2007;4(12):e325.
- 21 Cui X, Rosner B, Willett WC, Hankinson SE. Antioxidant intake and risk of endometrial cancer: results from the Nurses' Health Study. Int J Cancer 2011;128(5):1169-78.
- 22 Cui X, Rosner B, Willett WC, Hankinson SE. Dietary fat, fiber, and carbohydrate intake in relation to risk of endometrial cancer. Cancer Epidemiol Biomarkers Prev 2011;20(5):978-89.
- 23 Cust AE, Slimani N, Kaaks R, van BM, Biessy C, Ferrari Pet al. Dietary carbohydrates, glycaemic index, glycaemic load, and endometrial cancer risk within the European Prospective Investigation into Cancer and Nutrition cohort. Am J Epidemiol 2007;166(8):912-23.
- 24 de WF, de Ridder CM, Baanders-van Halewyn EA, Slotboom BJ. Endometrial cancer in a cohort screened for breast cancer. Eur J Cancer Prev 1996;5(2):99-104.
- 25 Dossus L, Rinaldi S, Becker S, Lukanova A, Tjonneland A, Olsen Aet al. Obesity, inflammatory markers, and endometrial cancer risk: a prospective case-control study. Endocr Relat Cancer 2010;17(4):1007-19.

- 26 Epstein E, Lindqvist PG, Olsson H. A population-based cohort study on the use of hormone treatment and endometrial cancer in southern Sweden. Int J Cancer 2009;125(2):421-5.
- 27 Ewertz M, Machado SG, Boice JD, Jr., Jensen OM. Endometrial cancer following treatment for breast cancer: a case-control study in Denmark. Br J Cancer 1984;50(5):687-92.
- 28 Fedirko V, Jenab M, Rinaldi S, Biessy C, Allen NE, Dossus Let al. Alcohol drinking and endometrial cancer risk in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Ann Epidemiol 2012.
- 29 Folsom AR, Kaye SA, Potter JD, Prineas RJ. Association of incident carcinoma of the endometrium with body weight and fat distribution in older women: early findings of the Iowa Women's Health Study. Cancer Res 1989;49(23):6828-31.
- 30 Folsom AR, Kushi LH, Anderson KE, Mink PJ, Olson JE, Hong CPet al. Associations of general and abdominal obesity with multiple health outcomes in older women: the Iowa Women's Health Study. Arch Intern Med 2000;160(14):2117-28.
- 31 Folsom AR, Demissie Z, Harnack L. Glycaemic index, glycaemic load, and incidence of endometrial cancer: the Iowa women's health study. Nutr Cancer 2003;46(2):119-24.
- 32 Friberg E, Mantzoros CS, Wolk A. Physical activity and risk of endometrial cancer: a population-based prospective cohort study. Cancer Epidemiol Biomarkers Prev 2006;15(11):2136-40.
- 33 Friberg E, Mantzoros CS, Wolk A. Diabetes and risk of endometrial cancer: a population-based prospective cohort study. Cancer Epidemiol Biomarkers Prev 2007;16(2):276-80.
- 34 Friberg E, Wolk A. Long-term alcohol consumption and risk of endometrial cancer incidence: a prospective cohort study. Cancer Epidemiol Biomarkers Prev 2009;18(1):355-8.
- 35 Friberg E, Orsini N, Mantzoros CS, Wolk A. Coffee drinking and risk of endometrial cancer--a population-based cohort study. Int J Cancer 2009;125(10):2413-7.
- 36 Friberg E, Orsini N, Mantzoros CS, Wolk A. Alcohol intake and endometrial cancer risk: a meta-analysis of prospective studies. Br J Cancer 2010;103(1):127-31.
- 37 Friedenreich C, Cust A, Lahmann PH, Steindorf K, Boutron-Ruault MC, Clavel-Chapelon Fet al. Anthropometric factors and risk of endometrial cancer: the European prospective investigation into cancer and nutrition. Cancer Causes Control 2007;18(4):399-413.
- 38 Friedenreich C, Cust A, Lahmann PH, Steindorf K, Boutron-Ruault MC, Clavel-Chapelon Fet al. Physical activity and risk of endometrial cancer: the European prospective investigation into cancer and nutrition. Int J Cancer 2007;121(2):347-55.

- 39 Furberg AS, Thune I. Metabolic abnormalities (hypertension, hyperglycemia and overweight), lifestyle (high energy intake and physical inactivity) and endometrial cancer risk in a Norwegian cohort. Int J Cancer 2003;104(6):669-76.
- 40 Galeone C, Augustin LS, Filomeno M, Malerba S, Zucchetto A, Pelucchi Cet al. Dietary glycaemic index, glycaemic load, and the risk of endometrial cancer: a casecontrol study and meta-analysis. Eur J Cancer Prev 2012.
- 41 Gapstur SM, Potter JD, Sellers TA, Kushi LH, Folsom AR. Alcohol consumption and postmenopausal endometrial cancer: results from the Iowa Women's Health Study. Cancer Causes Control 1993;4(4):323-9.
- 42 Genkinger JM, Friberg E, Goldbohm RA, Wolk A. Long-term dietary heme iron and red meat intake in relation to endometrial cancer risk. Am J Clin Nutr 2012;96(4):848-54.
- 43 George SM, Park Y, Leitzmann MF, Freedman ND, Dowling EC, Reedy Jet al. Fruit and vegetable intake and risk of cancer: a prospective cohort study. Am J Clin Nutr 2009;89(1):347-53.
- 44 George SM, Mayne ST, Leitzmann MF, Park Y, Schatzkin A, Flood Aet al. Dietary glycaemic index, glycaemic load, and risk of cancer: a prospective cohort study. Am J Epidemiol 2009;169(4):462-72.
- 45 Gierach GL, Chang SC, Brinton LA, Lacey JV, Jr., Hollenbeck AR, Schatzkin Aet al. Physical activity, sedentary behavior, and endometrial cancer risk in the NIH-AARP Diet and Health Study. Int J Cancer 2009;124(9):2139-47.
- 46 Giri A, Sturgeon SR, Luisi N, Bertone-Johnson E, Balasubramanian R, Reeves KW. Caffeinated Coffee, Decaffeinated Coffee and Endometrial Cancer Risk: A Prospective Cohort Study among US Postmenopausal Women. Nutrients 2011;3(11):937-50.
- 47 Gnagnarella P, Gandini S, La VC, Maisonneuve P. Glycaemic index, glycaemic load, and cancer risk: a meta-analysis. Am J Clin Nutr 2008;87(6):1793-801.
- 48 Green J, Cairns BJ, Casabonne D, Wright FL, Reeves G, Beral V. Height and cancer incidence in the Million Women Study: prospective cohort, and meta-analysis of prospective studies of height and total cancer risk. Lancet Oncol 2011;12(8):785-94.
- 49 Gunter MJ, Schaub JA, Xue X, Freedman ND, Gaudet MM, Rohan TEet al. A prospective investigation of coffee drinking and endometrial cancer incidence. Int J Cancer 2011.
- 50 Hamling J, Lee P, Weitkunat R, Ambuhl M. Facilitating meta-analyses by deriving relative effect and precision estimates for alternative comparisons from a set of estimates presented by exposure level or disease category. Stat Med 2008;27(7):954-70.
- 51 Harnack L, Nicodemus K, Jacobs DR, Jr., Folsom AR. An evaluation of the Dietary Guidelines for Americans in relation to cancer occurrence. Am J Clin Nutr 2002;76(4):889-96.

- 52 Hogervorst JG, Schouten LJ, Konings EJ, Goldbohm RA, van den Brandt PA. A prospective study of dietary acrylamide intake and the risk of endometrial, ovarian, and breast cancer. Cancer Epidemiol Biomarkers Prev 2007;16(11):2304-13.
- 53 Horn-Ross PL, John EM, Canchola AJ, Stewart SL, Lee MM. Phytoestrogen intake and endometrial cancer risk. J Natl Cancer Inst 2003;95(15):1158-64.
- 54 Jacobsen BK, Bjelke E, Kvale G, Heuch I. Coffee drinking, mortality, and cancer incidence: results from a Norwegian prospective study. J Natl Cancer Inst 1986;76(5):823-31.
- 55 Jain MG, Rohan TE, Howe GR, Miller AB. A cohort study of nutritional factors and endometrial cancer. Eur J Epidemiol 2000;16(10):899-905.
- 56 Je Y, Hankinson SE, Tworoger SS, Devivo I, Giovannucci E. A prospective cohort study of coffee consumption and risk of endometrial cancer over a 26-year follow-up. Cancer Epidemiol Biomarkers Prev 2011;20(12):2487-95.
- 57 Je Y, Giovannucci E. Coffee consumption and risk of endometrial cancer: findings from a large up-to-date meta-analysis. Int J Cancer 2012;131(7):1700-10.
- 58 Jonsson F, Wolk A, Pedersen NL, Lichtenstein P, Terry P, Ahlbom Aet al. Obesity and hormone-dependent tumors: cohort and co-twin control studies based on the Swedish Twin Registry. Int J Cancer 2003;106(4):594-9.
- 59 Kabat GC, Miller AB, Jain M, Rohan TE. Dietary iron and haem iron intake and risk of endometrial cancer: a prospective cohort study. Br J Cancer 2008;98(1):194-8.
- 60 Kabat GC, Miller AB, Jain M, Rohan TE. Dietary intake of selected B vitamins in relation to risk of major cancers in women. Br J Cancer 2008;99(5):816-21. (This is the paper used in the Section Alcohol)
- 61 Kabat GC, Park Y, Hollenbeck AR, Schatzkin A, Rohan TE. Intake of fruits and vegetables, and risk of endometrial cancer in the NIH-AARP Diet and Health Study. Cancer Epidemiol 2010;34(5):568-73.
- 62 Kabat GC, Heo M, Kamensky V, Miller AB, Rohan TE. Adult height in relation to risk of cancer in a cohort of Canadian women. Int J Cancer 2013;132(5):1125-32.
- 63 Key TJ, Appleby PN, Spencer EA, Travis RC, Allen NE, Thorogood Met al. Cancer incidence in British vegetarians. Br J Cancer 2009;101(1):192-7.
- 64 Khan M, Mori M, Sakauchi F, Aklimunnessa K, Kubo T, Fujino Yet al. Risk of endometrial cancer mortality by ever-use of sex hormones and other factors in Japan. Asian Pac J Cancer Prev 2006;7(2):260-6.
- 65 Kuriyama S, Tsubono Y, Hozawa A, Shimazu T, Suzuki Y, Koizumi Yet al. Obesity and risk of cancer in Japan. Int J Cancer 2005;113(1):148-57.
- 66 Kvale G, Heuch I. Lactation and cancer risk: is there a relation specific to breast cancer? J Epidemiol Community Health 1988;42(1):30-7.

- 67 Lacey JV, Jr., Brinton LA, Lubin JH, Sherman ME, Schatzkin A, Schairer C. Endometrial carcinoma risks among menopausal estrogen plus progestin and unopposed estrogen users in a cohort of postmenopausal women. Cancer Epidemiol Biomarkers Prev 2005;14(7):1724-31.
- 68 Larsson SC, Friberg E, Wolk A. Carbohydrate intake, glycaemic index and glycaemic load in relation to risk of endometrial cancer: A prospective study of Swedish women. Int J Cancer 2007;120(5):1103-7.
- 69 Larsson SC, Hakansson N, Akesson A, Wolk A. Long-term dietary acrylamide intake and risk of endometrial cancer in a prospective cohort of Swedish women. Int J Cancer 2009;124(5):1196-9.
- 70 Le ML, Wilkens LR, Mi MP. Early-age body size, adult weight gain and endometrial cancer risk. Int J Cancer 1991;48(6):807-11.
- Lindemann K, Vatten LJ, Ellstrom-Engh M, Eskild A. Body mass, diabetes and smoking, and endometrial cancer risk: a follow-up study. Br J Cancer 2008;98(9):1582-5.
- 72 Lindemann K, Vatten LJ, Ellstrom-Engh M, Eskild A. Serum lipids and endometrial cancer risk: results from the HUNT-II study. Int J Cancer 2009;124(12):2938-41.
- 73 Lindemann K, Vatten LJ, Ellstrom-Engh M, Eskild A. The impact of BMI on subgroups of uterine cancer. Br J Cancer 2009;101(3):534-6.
- 74 Loerbroks A, Schouten LJ, Goldbohm RA, van den Brandt PA. Alcohol consumption, cigarette smoking, and endometrial cancer risk: results from the Netherlands Cohort Study. Cancer Causes Control 2007;18(5):551-60.
- 75 Lof M, Sandin S, Hilakivi-Clarke L, Weiderpass E. Birth weight in relation to endometrial and breast cancer risks in Swedish women. Br J Cancer 2007;96(1):134-6.
- 76 Lukanova A, Bjor O, Kaaks R, Lenner P, Lindahl B, Hallmans Get al. Body mass index and cancer: results from the Northern Sweden Health and Disease Cohort. Int J Cancer 2006;118(2):458-66.
- 77 Lundqvist E, Kaprio J, Verkasalo PK, Pukkala E, Koskenvuo M, Soderberg KCet al. Co-twin control and cohort analyses of body mass index and height in relation to breast, prostate, ovarian, corpus uteri, colon and rectal cancer among Swedish and Finnish twins. Int J Cancer 2007;121(4):810-8.
- 78 Mai V, Kant AK, Flood A, Lacey JV, Jr., Schairer C, Schatzkin A. Diet quality and subsequent cancer incidence and mortality in a prospective cohort of women. Int J Epidemiol 2005;34(1):54-60.
- 79 McCullough ML, Bandera EV, Patel R, Patel AV, Gansler T, Kushi LHet al. A prospective study of fruits, vegetables, and risk of endometrial cancer. Am J Epidemiol 2007;166(8):902-11.

- 80 McCullough ML, Patel AV, Patel R, Rodriguez C, Feigelson HS, Bandera EVet al. Body mass and endometrial cancer risk by hormone replacement therapy and cancer subtype. Cancer Epidemiol Biomarkers Prev 2008;17(1):73-9.
- 81 Moore SC, Gierach GL, Schatzkin A, Matthews CE. Physical activity, sedentary behaviours, and the prevention of endometrial cancer. Br J Cancer 2010;103(7):933-8.
- 82 Moradi T, Nyren O, Bergstrom R, Gridley G, Linet M, Wolk Aet al. Risk for endometrial cancer in relation to occupational physical activity: a nationwide cohort study in Sweden. Int J Cancer 1998;76(5):665-70.
- 83 Nagle CM, Olsen CM, Ibiebele TI, Spurdle AB, Webb PM. Glycaemic index, glycaemic load and endometrial cancer risk: results from the Australian National Endometrial Cancer study and an updated systematic review and meta-analysis. Eur J Nutr 2012.
- 84 Neuhouser ML, Wassertheil-Smoller S, Thomson C, Aragaki A, Anderson GL, Manson JEet al. Multivitamin use and risk of cancer and cardiovascular disease in the Women's Health Initiative cohorts. Arch Intern Med 2009;169(3):294-304.
- 85 Nilsson LM, Johansson I, Lenner P, Lindahl B, Van GB. Consumption of filtered and boiled coffee and the risk of incident cancer: a prospective cohort study. Cancer Causes Control 2010;21(10):1533-44.
- 86 Ollberding NJ, Lim U, Wilkens LR, Setiawan VW, Shvetsov YB, Henderson BEet al. Legume, soy, tofu, and isoflavone intake and endometrial cancer risk in postmenopausal women in the multiethnic cohort study. J Natl Cancer Inst 2012 Jan 4 2012;67-76.
- 87 Olson JE, Sellers TA, Anderson KE, Folsom AR. Does a family history of cancer increase the risk for postmenopausal endometrial carcinoma? A prospective cohort study and a nested case-control family study of older women. Cancer 1999;85(11):2444-9.
- 88 Park SL, Goodman MT, Zhang ZF, Kolonel LN, Henderson BE, Setiawan VW. Body size, adult BMI gain and endometrial cancer risk: the multiethnic cohort. Int J Cancer 2010;126(2):490-9.
- 89 Patel AV, Feigelson HS, Talbot JT, McCullough ML, Rodriguez C, Patel RCet al. The role of body weight in the relationship between physical activity and endometrial cancer: results from a large cohort of US women. Int J Cancer 2008;123(8):1877-82.
- 90 Pelucchi C, La VC, Bosetti C, Boyle P, Boffetta P. Exposure to acrylamide and human cancer--a review and meta-analysis of epidemiologic studies. Ann Oncol 2011;22(7):1487-99.
- 91 Prentice RL, Thomson CA, Caan B, Hubbell FA, Anderson GL, Beresford SAet al. Low-fat dietary pattern and cancer incidence in the Women's Health Initiative Dietary Modification Randomized Controlled Trial. J Natl Cancer Inst 2007;99(20):1534-43.

- 92 Pukkala E, Kyyronen P, Sankila R, Holli K. Tamoxifen and toremifene treatment of breast cancer and risk of subsequent endometrial cancer: a population-based case-control study. Int J Cancer 2002;100(3):337-41.
- 93 Rapp K, Schroeder J, Klenk J, Stoehr S, Ulmer H, Concin Het al. Obesity and incidence of cancer: a large cohort study of over 145,000 adults in Austria. Br J Cancer 2005;93(9):1062-7.
- 94 Reeves GK, Pirie K, Beral V, Green J, Spencer E, Bull D. Cancer incidence and mortality in relation to body mass index in the Million Women Study: cohort study. BMJ 2007;335(7630):1134.
- 95 Reeves KW, Carter GC, Rodabough RJ, Lane D, McNeeley SG, Stefanick MLet al. Obesity in relation to endometrial cancer risk and disease characteristics in the Women's Health Initiative. Gynecol Oncol 2011;121(2):376-82.
- 96 Renehan AG, Tyson M, Egger M, Heller RF, Zwahlen M. Body-mass index and incidence of cancer: a systematic review and meta-analysis of prospective observational studies. Lancet 2008;371(9612):569-78.
- 97 Schouten LJ, Goldbohm RA, van den Brandt PA. Anthropometry, physical activity, and endometrial cancer risk: results from the Netherlands Cohort Study. J Natl Cancer Inst 2004;96(21):1635-8.
- 98 Schouten LJ, Goldbohm RA, van den Brandt PA. Anthropometry, physical activity, and endometrial cancer risk: results from the Netherlands cohort study. Int J Gynecol Cancer 2006;16 Suppl 2:492.
- 99 Setiawan VW, Pike MC, Kolonel LN, Nomura AM, Goodman MT, Henderson BE. Racial/ethnic differences in endometrial cancer risk: the multiethnic cohort study. Am J Epidemiol 2007;165(3):262-70.
- 100 Setiawan VW, Monroe KR, Goodman MT, Kolonel LN, Pike MC, Henderson BE. Alcohol consumption and endometrial cancer risk: the multiethnic cohort. Int J Cancer 2008;122(3):634-8.
- 101 Shimazu T, Inoue M, Sasazuki S, Iwasaki M, Kurahashi N, Yamaji Tet al. Coffee consumption and risk of endometrial cancer: a prospective study in Japan. Int J Cancer 2008;123(10):2406-10.
- 102 Silvera SA, Rohan TE, Jain M, Terry PD, Howe GR, Miller AB. Glycaemic index, glycaemic load and risk of endometrial cancer: a prospective cohort study. Public Health Nutr 2005;8(7):912-9.
- 103 Song YM, Sung J, Ha M. Obesity and risk of cancer in postmenopausal Korean women. J Clin Oncol 2008;26(20):3395-402.
- 104 Stensvold I, Jacobsen BK. Coffee and cancer: a prospective study of 43,000 Norwegian men and women. Cancer Causes Control 1994;5(5):401-8.
- 105 Sun Q, Xu L, Zhou B, Wang Y, Jing Y, Wang B. Alcohol consumption and the risk of endometrial cancer: a meta-analysis. Asia Pac J Clin Nutr 2011;20(1):125-33.

- 106 Sung J, Song YM, Lawlor DA, Smith GD, Ebrahim S. Height and site-specific cancer risk: A cohort study of a korean adult population. Am J Epidemiol 2009;170(1):53-64.
- 107 Tang NP, Li H, Qiu YL, Zhou GM, Ma J. Tea consumption and risk of endometrial cancer: a metaanalysis. Am J Obstet Gynecol 2009;201(6):605-8.
- 108 Terry P, Baron JA, Weiderpass E, Yuen J, Lichtenstein P, Nyren O. Lifestyle and endometrial cancer risk: a cohort study from the Swedish Twin Registry. Int J Cancer 1999;82(1):38-42.
- 109 Tornberg SA, Carstensen JM. Relationship between Quetelet's index and cancer of breast and female genital tract in 47,000 women followed for 25 years. Br J Cancer 1994;69(2):358-61.
- 110 Tretli S, Magnus K. Height and weight in relation to uterine corpus cancer morbidity and mortality. A follow-up study of 570,000 women in Norway. Int J Cancer 1990;46(2):165-72.
- 111 Tulinius H, Sigfusson N, Sigvaldason H, Bjarnadottir K, Tryggvadottir L. Risk factors for malignant diseases: a cohort study on a population of 22,946 Icelanders. Cancer Epidemiol Biomarkers Prev 1997;6(11):863-73.
- 112 Turati F, Gallus S, Tavani A, Tramacere I, Polesel J, Talamini Ret al. Alcohol and endometrial cancer risk: a case-control study and a meta-analysis. Cancer Causes Control 2010;21(8):1285-96.
- 113 Uccella S, Mariani A, Wang AH, Vierkant RA, Robien K, Anderson KEet al. Dietary and supplemental intake of one-carbon nutrients and the risk of type I and type II endometrial cancer: a prospective cohort study. Ann Oncol 2011;22(9):2129-36.
- 114 Unfer V, Casini ML, Costabile L, Mignosa M, Gerli S, Di Renzo GC. Endometrial effects of long-term treatment with phytoestrogens: a randomized, double-blind, placebo-controlled study. Fertil Steril 2004;82(1):145-8, quiz.
- 115 van LL, Kirsh VA, Kreiger N, Rohan TE. Endometrial cancer and meat consumption: a case-cohort study. Eur J Cancer Prev 2011;20(4):334-9.
- 116 Weiderpass E, Pukkala E, Vasama-Neuvonen K, Kauppinen T, Vainio H, Paakkulainen Het al. Occupational exposures and cancers of the endometrium and cervix uteri in Finland. Am J Ind Med 2001;39(6):572-80.
- 117 Wilson KM, Mucci LA, Rosner BA, Willett WC. A prospective study on dietary acrylamide intake and the risk for breast, endometrial, and ovarian cancers. Cancer Epidemiol Biomarkers Prev 2010;19(10):2503-15.
- 118 Xu WH, Zheng W, Xiang YB, Ruan ZX, Cheng JR, Dai Qet al. Soya food intake and risk of endometrial cancer among Chinese women in Shanghai: population based case-control study. BMJ 2004;328(7451):1285.
- 119 Xue F, Hilakivi-Clarke LA, Maxwell GL, Hankinson SE, Michels KB. Infant feeding and the incidence of endometrial cancer. Cancer Epidemiol Biomarkers Prev 2008;17(6):1316-21.

- 120 Yamazawa K, Miyazawa Y, Suzuki M, Wakabayashi M, Kaku H, Matsui Het al. Tamoxifen and the risk of endometrial cancer in Japanese women with breast cancer. Surg Today 2006;36(1):41-6.
- 121 Yang HP, Gierach GL, Danforth KN, Sherman ME, Park Y, Wentzensen Net al. Alcohol and endometrial cancer risk in the NIH-AARP diet and health study. Int J Cancer 2011;128(12):2953-61.
- 122 Yang HP, Wentzensen N, Trabert B, Gierach GL, Felix AS, Gunter MJet al. Endometrial Cancer Risk Factors by 2 Main Histologic Subtypes: The NIH-AARP Diet and Health Study. Am J Epidemiol 2012.
- 123 Yang TY, Cairns BJ, Allen N, Sweetland S, Reeves GK, Beral V. Postmenopausal endometrial cancer risk and body size in early life and middle age: prospective cohort study. Br J Cancer 2012;107(1):169-75.
- 124 Yu X, Bao Z, Zou J, Dong J. Coffee consumption and risk of cancers: a meta-analysis of cohort studies. BMC Cancer 2011;11:96.
- 125 Zeleniuch-Jacquotte A, Akhmedkhanov A, Kato I, Koenig KL, Shore RE, Kim MYet al. Postmenopausal endogenous oestrogens and risk of endometrial cancer: results of a prospective study. Br J Cancer 2001;84(7):975-81.
- 126 Zheng W, Kushi LH, Potter JD, Sellers TA, Doyle TJ, Bostick RMet al. Dietary intake of energy and animal foods and endometrial cancer incidence. The Iowa women's health study. Am J Epidemiol 1995;142(4):388-94.
- 127 Zheng W, Doyle TJ, Kushi LH, Sellers TA, Hong CP, Folsom AR. Tea consumption and cancer incidence in a prospective cohort study of postmenopausal women. Am J Epidemiol 1996;144(2):175-82.